SB AlertDue to the anticipated winter storm, all classes and in-person events for Monday, Jan. 26 are canceled across Stony Brook Main Campus, Southampton, and Manhattan. Go to Office of Emergency Management for more information.   More information
Skip Navigation
Search

AMS 503, Applications of Complex Analysis 
A study of those concepts and techniques in complex function theory that are of interest for their applications. Pertinent material is selected from the following topics: harmonic functions, calculus of residues, conformal mapping, and the argument principle. Application is made to problems in heat conduction, potential theory, fluid dynamics, and feedback systems. 
3 credits, ABCF grading

This course will be offered in the Fall semester only

 Required Textbooks:

"Complex Analysis:  An Introduction to the Theory of Analytic Functions of One Complex Variable" by Lars V. Ahlford, 3rd Editiion, 1979, McGraw-Hill Education, ISBN: 978-0070006577

"Basic Complex Analysis", 3rd Edition, by Jerrold E. Marsden and Michael J. Hoffman; Publisher: W.H. Freeman, 1999; ISBN: 978-0-716728771

 

Learning Outcomes:

1) Demonstrate mastery of basic definitions & operations, polar form, functions, limits, compact sets, differentiation, Cauchy-Riemann equations, angles under holomorphic ("differentiable") maps.

2) Demonstrate mastery of :
      * Formal & convergent power series, analytic functions, inverse & open mapping theorems, local maximum modulus principle;
      * Connected sets, integrals over paths, primitives ("antiderivatives"), local Cauchy theorem;
      * Winding numbers, global Cauchy Theorem.

3) Demonstrate mastery of:
      * Applications of Cauchy's integral formula, Laurent series;
      * Calculus of residues, evaluation of complex definite integrals, Fourier transform;
      * Conformal mapping, Schwarz lemma, and applications;
      * Harmonic functions;
      * Schwarz reflection;
      * Riemann mapping theorem;
      * Analytic continuation along curves;
      * Applications of Maximum Modulus Principle an Jensen's Formula.

4) Study topics on elliptic functions, Gamma & Zeta functions.