The Economic Impact of Energy Research at Argonne National Laboratory

Mark C. Petri
Technology Development Director
Energy Engineering and Systems Analysis Directorate

Advanced Energy 2011
Buffalo, New York
October 12, 2011
Argonne: The First U.S. National Laboratory

- Founded in 1943, made a national laboratory in 1946.
- 1500-acre site southwest of Chicago.
- 3,200 employees.
- 1,450 scientists and engineers.
- 750 Ph.D.s.
- $675M operating budget.
- A broad, multidisciplinary R&D portfolio.
Argonne research thrusts

- Multi-program/multidisciplinary research.
 - Advanced Computing.
 - Alternative Energy.
 - Nuclear Reactor Technology.
 - Environmental Management.
 - Transportation.
 - Energy Storage.
 - Nanotechnology.
 - Biotechnology.
 - Policy Analysis.
“The Economic Impact of Argonne National Laboratory”

- Anderson Economic Group report.
- Measured *net new* economic impact of Argonne.
 - Excludes expenditures that would have happened regardless of Argonne operations.

- Argonne economic impact on Illinois in 2010:
 - $697M in economic output (earnings to households and businesses).
 - 4,952 jobs.
Mechanisms for Industry Collaborations

- Cooperative Research and Development Agreements (CRADAs).
 - Facilitating technology transfer.
 - 19 in 2010.

- Work for others.
 - Allowing Argonne to assist non-DOE organizations.
 - 76 non-federal in 2010.

- Technology Service Agreements (TSAs).
 - Allowing outside organizations access to Argonne facilities and expertise.
 - 24 non-federal in 2010.

- Total technology transfer agreements in 2010: **503**
- Patent and software licenses: **33**
An example success story

- DOE-supported R&D in the 1990s led to Argonne’s nickel-manganese-cobalt cathode technology for Li-ion batteries.
- The technology has been licensed to several companies.
 - BASF.
 - LG Chem Power, Inc.
 - Panasonic.
 - Samsung.
 - Sanyo.
- The LG Chem battery now powers the Chevy Volt
 - The first U.S. mass-market plug-in hybrid electric vehicle.
Argonne’s major user facilities

Center for Nanoscale Materials

- 470 users

ATLAS

- 170 users

Electron Microscopy Center

- 190 users

Argonne Leadership Computing Facility

- 928 users
Advanced Photon Source

3,796 users

Argonne total for 2010:
5,554 users
70 visiting faculty
300 post-doctoral researchers
600 undergraduate/graduate students
4,300 K-12 students
Fuel spray studies at the Advanced Photon Source

- Spray structure is important for efficient combustion. It depends on fuel properties and engine design.
- The hard, penetrating x-rays of the Advanced Photon Source allow us to see fuel spray in action.
- General Motors, Chrysler, Daimler.
- Visteon, Delphi, Bosch, Continental, Denso.
Solar Electricity

- Critical pathways to reducing the levelized cost of solar energy:
 - Novel materials.
 - Devices.
 - Process engineering.

- Supporting science and engineering methods:
 - Nanomaterial synthesis, self-assembly, and fabrication.
 - Advanced structural characterization.
 - Time-resolved x-ray and optical techniques.
 - Decision and information analysis.
Midwest Photovoltaics Analysis Facility (MPAF)

- Real-world performance data and local meteorological data are needed to accurately assess levelized cost of electricity (LCOE)*.

- Pilot facility constructed at the Illinois Tollway headquarters.
 - Five module technologies: c-Si, p-Si, a-Si, CdTe, CIGS.
 - Weather stations near modules and at standard height.
 - Monitoring of individual module performance in real time.

- Ultimately, a diverse network of such sites will feed into a publically available database of comparative performance.

Argonne’s wind power research

- Environmental impacts of wind power.
 - Impact on critical wildlife habitats.
 - Visual impact analysis.

- Wind turbine reliability.
 - Improved coatings and lubricants.
 - Better gear box reliability.

- Advanced drive train development.
 - Superconducting direct drive train.

- Wind power forecasting and electricity markets.
 - Improved statistical forecasting models.
 - Use of forecasting in operational decisions.
 - Stochastic optimization to reduce price volatility.
Adjoint analysis of numerical weather prediction models

- Indicates sensitivity of market (costs and efficiency) to uncertainties in weather (wind, temperature, radiation).
- Guides the optimal placement of weather sensors.
Reducing building energy consumption with adaptive management

Partner: BuildingIQ

Without optimization

Energy savings with Argonne optimization
Building efficiency – Chicago Loop Retrofit

- Demonstration elements:
 - Chicago Loop - 120 million square feet built.
 - Cold climate zone.

- Research elements:
 - Retrofit business case development – decision analysis under uncertainty.
 - Innovative strategies for accelerating retrofits.
 - Community vs. single building focus.

- Partners:
 - Georgia Institute of Technology
 - Sieben Energy Associates
 - Skidmore Owings & Merrill
 - Clinton Climate Initiative