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Smart Grid Distributed Generation System (DGS)
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Smart Grid: Power Grid + Local Generation + Cyber (Internet) + Intelligent Fault-
Tolerant Distributed Control + Real-Time Pricing
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Sustainable Energy Technoloqgy
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Benefits of DGS: Installation near to local loads; increased efficiency and reliability; peak

load shaving; on-site standby power systems during grid outages; modular structure to
facilitate system expansion; combined heat and power applications.
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Key Research Areas

m Smart Grid Architecture

m  Cyber Security

m  Modeling and Control

m  Smart Metering and Pricing

m Pervasive Monitoring

Challenges

m  Highly variable supply patterns ... stochastic problem .....storage

m Efficient distributed algorithms required to process massive amounts of data for
real-time control

m Adaptive and self-healing control algorithms required for attaining high
efficiency, reliability, and security of the large-scale distributed system

m Secure protocols, firewall mechanisms, intrusion prevention
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Control Problems

m Control of individual renewable energy, storage, and switching components in
microgrid systems

m Island mode:

Microgrid control system should ensure that real and reactive power are
matched between local generation and load.

Control system should also provide voltage and frequency stability.
Load scheduling/shifting and load shedding.
Adapting to load changes that could be large relative to total load.

m Grid-connected mode:

Performance principally determined by grid. Microgrid appears as single
dispatchable unit.

Microgrid control system should ensure that the impact of the distributed
generation and any islanding events do not adversely affect grid.
Specifically, voltage and current fluctuations, total harmonic distortion.
Phase synchronization with the grid should be addressed while
transitioning from island to grid-connected mode.

Local control mechanisms can improve power quality for loads within

microgrid.
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Control Problems (Contd.)

m Transitioning between island and connected modes

m Monitoring grid conditions and detecting faults

m Deciding when to disconnect

_ Decentralized =

m Preserving stability during transients

m Control aspects of the decentralized interconnected system
m  Multi-agent systems

m  Communication requirements and mechanisms

m Distributed control
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Control Objectives and Performance Metrics
m  Frequency control ... deviation (in Hz) from nominal value

m Performance expressed as combination of multiple factors such as maximum
frequency deviation, interval within which frequency is contained for some
percentage of total time, etc. — e.g., within 1 Hz of nominal value 95% of time
and within 3 Hz of nominal value always.

m \oltage magnitude control ... deviation (as percentage) from nominal value

m Performance expressed as combination of maximum deviation of voltage
magnitude, maximum RMS deviation of sliding-window voltage magnitude
signal during some percentage of total time, etc. — e.g. within 10% of
nominal value always and RMS deviation of 5 min sliding-window within
15% during 5% of the total time.

m  Control of total harmonic distortion (THD) ... performance expressed as THD
measured over a sliding window of time (e.g., 0.2 s).

m  Control of short-term transients (flickers) — response to fast-varying loads;
performance expressed as maximum short-term transient voltage
deviations, number of deviations in a sliding window of time, and response time
for correction. Voltage magnitude and frequency control while switching from

grid-connected to island operation.
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Microgrid Control Structure
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@ Q vs. E droop
@ Pvs. o droop
@ Inner-loop current and voltage controls
@ Monitoring, grid impedance estimation, fault detection, breaker control
\_@ PLL synchronization -

Multi-agent approach with plug-and-play framework and uniform communication protocol: DER control
agents, User-side configuration agents, Monitoring and data recording agents, Island/connected transition
control agents, Load scheduling agents, etc.
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Microgrid Control Aspects
= Adaptive droop control:

» Real power P:
» Frequency droop (Pvs.w) : w=w — 7, (P-P")
» Angle droop (Pvs. §): 6 =0 — 75(P— P)

» Reactive power Q:
» Amplitude droop (Qvs.E) : E=E - 7.(Q-Q")

» Grid impedance estimation; Xs: X, Xg functions of online adaptation
parameters

= Layered control hierarchy:
» Primary control: P, Q droop
» Secondary control: w, E restoration and synchronization
» Tertiary control: P, Q buy/sell decisions --- economic optimization

« Power sharing among DER microsources and storage elements in microgrid by
appropriate droop control and synchronization; agent-based control structure
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PEM Fuel Cell Based DG System

= Attractive features of PEM Fuel Cell : high power density, solid
electrolyte, low operating temperature (50-1000C), fast start-up, low
sensitivity to orientation, favorable power-to-weight ratio, long cell and
stack life, and low corrosion

= Analysis of performance and the operating characteristics of stand-alone
PEM fuel cell based DG system feeding to time-varying loads.

=  Development of dynamic models for PEM fuel cell and its power
conditioning unit (dc/dc boost converter, three-phase dc/ac inverter with L-
C filter and transformer).

= Development of control technigues to achieve desired performance of the
system.

= Determination of energy capacity of storage device that needs to be
connected at DC bus
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Desired Performance Characteristics of Stand-Alone
PEM Fuel Cell Based DG System

= Provide output voltage to loads at magnitude 208 V(L-L)/120 V (L-N) and at
60 Hz frequency up to its rated value.

= Provide power during peak load demand and during load transients.

=  Output voltage of the system must have low load regulation (< 5 %) - system
must be able to maintain steady-state output voltage independent of load
conditions up to its rated value.

= Provide output voltages with low total

harmonic distortion (THD) — . Boost DG-DC

(Reduction in 51" and 7" harmonic)

= Protect itself from overload conditions
such as short circuit faults. Storage

Element

Maximize life of fuel cell and battery.
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Modeling and System ldentification of Fuel Cell Based DGS Unit

= Equations of operation based on physical principles; State space description of the

system dynamics. System description contains:

e Parametric uncertainties -- estimated via Maximum Likelihood Estimation (MLE)

« Functional uncertainties --- estimated via Neural Network (NN) modeling
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PEM Fuel Cell Modeling: State Space
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Modeling of Storage Element and DC-DC Boost Converter

Storage Element: Lead-Acid Battery

b=1p _ Up . output voltage at the battery terminals
v = By — iy Ry iy : current supplied by the battery
Ey, = Epp — Qy + Ay exp(—Bj % b) E4: no-load (open-circuit) voltage of the battery

Qb_b

Boost DC-DC Converter: Time-averaging to capture dynamic models for switch-closed
and switch-open conditions
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D, :duty cycle of the switching input Sy,
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Control Objectives for PEM Fuel Cell Based DG System

@ DC-DC voltage tracking objective: Given a desired output voltage
trajectory Vpc ges(1), the output of the DC-DC converter should track

Ve, des(1)-

@ Fuel cell voltage tracking objective: The output of the PEM fuel cell

should track a (nominally constant) desired voltage Vges — typically
chosen to be equal to the constant nominal voltage of the storage

element.

@ Pressure differential minimization objective: The signal |Py, (1) — Po,(t)|
should be minimized. This helps in reducing membrane degradation

effects.

Available Control Inputs: Switching command signal to the DC-DC converter
and the channel pressures of hydrogen and oxygen being supplied to the fuel

cell
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Control Design for PEM Fuel Cell Based DG System
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Smart Grid Monitoring and Anomaly Detection
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Cyber-Controlled Smart Grid
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This diagram represents the architecture of a distributed generation
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