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Direct organic fuel cell/flow battery concept
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We are establishing a world class interdisciplinary research center 
enabling the reversible use of the liquid high energy density carriers in 
fuel cells for next generation of effective, flexible, and safe systems for 
mobile and stationary applications

EFRC-CETM Vision
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The EFRC is pursuing electrocatalysis and transport phenomena in 
anode and membrane materials of the organic fuel cell/flow battery as 
the basis for an entirely new high density electrical energy storage

EFRC-CETM Strategy
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Focus areas:  
1. Organic fuel
2. C-H bond catalysis
3. Electro(de)hydrogenation catalyst
4. Low humidity proton exchange membrane
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EFRC-CETM long-term goals
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EFRC-CETM Team

Combined expertise in catalysis, 
electrochemistry, fuel cells, PEM 
membranes, electrocatalysts, 
batteries, hydrogen storage, 
computational modeling, and 
system integration

GE Global Research
Pete Bonitatebus Mark Doherty 
Hubert Lam Thomas Miebach
Peter Palomaki Bob Perry
Andrea Peters Matt Rainka
Oltea Siclovan Davide Simone
Grigorii Soloveichik Judy Stein
Alex Usyatinsky Gary Yeager
Guillermo Zappi Ken Zarnoch

Lawrence Berkeley National Lab
Heather Buckley Kyle Clark
Matthew Dodd Peter Driscoll
Megan Hoarfrost Dan Kellenberger
John Kerr Sergio Rozenel

Yale University
Victor Battista Robert Crabtree
Steven Konezny Oana Raluca Luca 
Shubhro Saha Eduardo Sproviero
Ting Wang
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Traditional approach
LQHn  LQ + n/2 H2 
H to be minimized
EFRC approach
LQHn +  n/4 O2  LQ + n/2 H2O
(GLQHn - GLQ) to be minimized to maximize cell voltage
Theoretical cell voltage 0.95 – 1.1 V 
(depends on organic hydrogen carrier)

Fuel (organic carrier) focus

LQ*H2

LQ

LQ*H2

LQ

Organic fuel requirements
• Minimal G dehydrogenation of organic carriers 

via molecular modeling guidance
• Scalable synthesis of aromatic precursors and 

hydrogenation to saturated carriers (high pressure lab) 
• Liquid at ambient conditions, low vapor pressure
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Homogenous C-H bond activation AND electron transfer

• Define the C-H bond activation preferable pathway 
(oxidative addition, electrophilic substitution, etc.)

• Factors controlling the catalyst’s redox properties
• Mechanism of dehydrogenation/hydrogenation (first step the moist challen
• Multi-step activation/electron transfer on the same center

catalyst
LQHn - n e-  LQ + n H+

From surface catalysis to defined center catalysis
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C-H Bond Catalysis Focus
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Electrocatalysis focus
Electrocatalysis for dehydrogenation and hydrogenation

Electrocatalyst requirements
• Fast electron transfer from metal centers through a linker to electrode via

study of the transport mechanism and determination of controlling factors
• Fast proton transport to PEM via structured catalyst/support
• Robust catalyst that tolerant to impurities/reaction products

- design catalyst ligand environment for selectivity
- use nanosized metal alloys catalysts supported on carbon

electrode
LHn - n e-  L + n H+

EtOH, CH3Cl Rinse

N
NN

N
NN

1) IN3 in hexanes 2) , Cu(I)

CH3Cl, DMSO, 
H2O Rinse

catalyst
catalystcatalyst

Chronoamperometry of baseline 
RVC (blue) and functionalized RVC 
(red)
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Proton exchange membrane focus

Membrane requirements
• Water free PEM (H2O detrimental to anode chemistry) 
• Low fuel and products solubility – mechanical integrity 
• Proton conductivity 10-3 S/cm @ 120 oC
• High oxidative stability at 120 oC 
• Thermal stability (> 150 oC)
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Direct organic hydride fuel cell testingFuel Cell Testing 
Station

Fuel Cell Assembly
Membrane Electrode 

Assembly (MEA)
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Membrane dehydration,
new membranes needed

• 5 cm2 active area
• Anode: 4mg/cm2 60% PtRu/C, 

C-cloth anode GDL
• Cathode: 2 mg/cm2 40% Pt/C 
•115 Nafion membrane

Significant current observed for tetralin

Use of liquid hydrocarbon fuel in fuel cell demonstrated
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Liquid fuel cells OCV, V
Fuel        Theory     Exp.
MeOH       1.21       0.73
Decalin     1.10       0.55
Tetralin     1.08       0.66
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