

## Geothermal Drilling vs. Oil & gas Drilling

- Hard Rock
  - Volcanic top to bottom
- Temperature
- Low Reservoir Pressures
- Completion Techniques
- High Production Rates



## **Developing the Drilling Program**

- Pertinent data is required to adequately design and ultimately drill the well.
- Our goal is to develop a drilling program then a cost estimate for budgeting purposes.
- Questions that we need answered to develop a drilling program and cost estimate:
  - Location of the well
  - Governmental regulations for the area to be drilled
  - Proposed depth of well
  - Proposed zones of interest
  - Final hole and casing diameters (final hole size)
  - Purpose of the well (What will the hole be used for and what are the size of the instruments to be installed)
  - Nature of the resource (vapor, liquid or mixture)
  - Elevation of the well
  - Proposed lithology, location of faults and earthquake centers
  - As much information as possible from nearby wells
  - Expected temperature profile of the well



## The Drilling Program

Drilling Procedure - Operations in sequence:

- Prepare Location and set 30' Conductor
- Move in Rig and rig up on well.
- Make up 26" BHA and spud through 30" conductor to 500'
- Pick up and run in the hole with 20" casing and cement same.
- Cut off 30" conductor and 20" surface casing and attach Blowout equipment.
- Drill 17 ½" hole to 4,000'
- Set and cement 13 3/8" casing to Total Depth
- Install well head and BOP
- Drill 12 ¼" hole to 8,000'
- Test and Complete





#### Understanding Equipment and Technology Casing

- Design detailed casing program:
  - Based on hole size, casing size (O.D.) and approximate setting depth, we then design to casing string.
  - Establish casing grade, weight per foot and connection type
  - Design casing based on manufactured properties of the casing weight and grades, API (American Petroleum Institute) established manufactured properties for:
    - Collapse (ability to resist external pressure that is a crushing action)
    - Tensile strength suspension ability of the pipe
    - Burst ability to resist internal pressures.



## Wellhead and **Valving**



#### ThermaSource

### **Other Drilling Considerations Drilling System Design**

Each section of the well must be drilled with the best systems to allow casing to be set and cemented. Various systems are available:

- Mud Systems have many purposes; cool bit and drill strings, lubricates, carry's out cuttings, holds back and balance wellbore and resource pressures and helps to keep poorly or unconsolidated formations in place
- Aerated System is a mixture of mud or water and air injected within. Used in areas of low reservoir pressures and poorly consolidated formations.
- Air Drilling uses compressed air in areas of very low reservoir pressures.



# Other Drilling Considerations Cementing

A cement slurry and procedure is designed to completely fill all annular spaces between the casing and the wellbore:

- Good cementing is the key to success in well completions:
  - It reduces expansion due to temperature
  - Reduces casing problems due to trapped voids of mud or water between casings
  - Withstand excessive pressures that may be encountered within casing
- Cement is designed to:
  - Give adequate pumping time
  - Produce adequate compressive strengths once it is hard and set
  - Develop good bonding between casing and wellbore & casing and casing



#### The Bid Process

- The most important factors are:
  - Derrick capacity
  - Draw works horsepower well pulling capacity
  - Substructure height
  - Pumping output
  - Power needs
  - Space requirements

- Drill pipe size and grades
- Mud system capacity and mud cleaning equipment
- Rotary table size
- Fuel consumption
- Day rate
- Mobilization/Demobilization costs
- Extra provided equipment
  - Forklift
  - BOPE

Bids are received and evaluated. A cost estimate is developed based on bids and days vs. depth curve.





## **Major Drilling Risks**

- Lost circulation
- Poor Cement Jobs
- · Corrosion and presence of H2S
- · Poorly consolidated formations



# **Drilling Contingencies**

- Slotted liners
- Option to run and cement additional casing strings as required
- Special handling needs
  - Hot liners
  - Welded pipe and casing
- Additional blow out preventer needs and rotating heads
- Sumpless operations
- Abatement of emissions during drilling
- Air compressors
- Air, steam and cuttings separators. Discharge re-circulating systems
- Handling poorly consolidated formations
- Corrosion
- Mud Coolers



