

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

CARLOS M. PEREIRA

Carlos.M.Pereira1@us.Army.mil

Power and Energy Hub Advanced Precision Concepts Branch Chief Munitions Sensors and Guidance Division ARDEC, Picatinny Arsenal Bld 407, New Jersey, 07806 (Desk) 973-724-1542 (Cell) 973-896-5909 Ralph Tillinghast <u>ralph.tillinghast@us.army.mil</u> Lab Director

Collaboration Innovation Lab Mortar Fire Control Systems ARDEC, RDAR-WSF-M Building 31, Room 200 Picatinny Arsenal NJ 07806-5000

Phone: 973-724-2095 Fax: 973-724-1613 Chuck McMullan

chuck.mcmullan@us.army.mil

Power and Energy Hub Advanced Precision Concepts Branch Munitions Sensors and Guidance Division ARDEC, Picatinny Arsenal Bld 407, New Jersey, 07806 (Desk) 973-724 – 2755 Hai-Long Nguyen hailong.nguyen@us.army.mil

Power and Energy Hub Advanced Precision Concepts Branch Munitions Sensors and Guidance Division ARDEC, Picatinny Arsenal Bld 407, New Jersey, 07806 (Desk) 973-724 – 1543

ARDEC Power & Energy Future Vision

Power & Energy Capacity Requirements

1 - 100 mW **1 KW 10 MW** 1 W **10 KW** 100 KW **1 MW** 2TW Thermo Mechanical Raw Fuels **EM Wave** PhotoVoltaic High efficiency Energy Aerodynamic Green / Novel Fuel Cells **Switching** Harvesting **Emission** Harvesting **Eco-Friendly** Forces Electrode Modeling & Regulation Harvesting Flow Materials and (Flight / Energetic (Optical / RF & Radioisotope Based Electrical Simulation Materials **Impact** Photovoltaics) Thermo **Energy Sources** Storage Manufacturin Flywheel) electric Materials

NOVEL POWER, ENERGY & INTEGRATED SYSTEMS

PRECISION / SMART MUNITIONS

A SYSTEMS APPROACH FOR GUN FIRED MUNITIONS

OBJECTIVE

- Bring a systems approach to the management of power requirements throughout the mission profile of smart and guided munitions across all caliber ranges.
- □ Develop technologies that free up lethality volume, by reducing the size of power sources
- Reduce munitions power to a single battery or eliminate battery altogether in some applications.

APPROACH

- Harvest energy from the vibrational environment of munitions systems
- Optimize the conversion of energy, store in a capacitor medium
- □ Combine harvested/stored energy with optimized electrochemical stored energy

PAYOFF FOR THE ARMY

- □ Improve reliability, reduce cost, improve safety, temperature performance and producibility.
- Improve scalability of power systems across all munition caliber ranges.

A SYSTEMS APPROACH FOR GUN FIRED MUNITIONS

PRE-LAUNCH

- Optical PowerTransfer.
- Inductive Power transfer
- Contact.

Advantages:

- No need to initiate reserve batteries
- Transfers power and information to the round before firing
- Same method used for maintenance and health of rounds.

LAUNCH - PERIOD

Harvesting:

- Stored mech. energy.
- Firing acceleration.
- Spinning.

Advantages:

- Safety (no initial power).
- Replaces onboard battery
- Wide temp. performance
- Conformable
- Capability to survive entire launch range.(10 Kg's 250 Kg's)

FLIGHT

Harvesting:

- Thermophotovoltaic
- Piezo/spring storage
- Spinning

Reserve Cells:

- Improved Thermals
- Liquid reserves

Advantages:

- Meets wide ranges of munitions power requirements.
- Meets fast power risetime needs.
- Meets power needs in high spin.
- Meets launch / flight survivability and shelf life requirements

Maintenance & Health

- □ Simple / safe method to wake up round, transfer power and data.
- Uses small optical window on round

Advantages:

- No need to initiate reserve batteries
- Safe, secure, can be automated.

TECHNOLOGY DRIVEN, WARFIGHTER FOCUSED

POWER AND ENERGY A SYSTEMS APPROACH FOR GUN FIRED MUNITIONS

Power Energy Systems

Energy Harvesting Sub-system

Energy Storage Sub-system

Optical Carrier Harvesting

Spring Storage Piezo - Harvester

ThermoPhotoVoltaic

Super Capacitor Electro-Chemical Storage

Power Optimization Subsystem

Power Controller

Combines electrochemical storage
with Energy Harvesting
and its scalable
to meet a wide range of
munitions power requirements

Uses Energy Harvesting
To meet low power requirements
To replace chemical batteries

ARDEC POWER AND ENERGY CHALLENGES

Munitions & Fuzes

- Batteries
 - **≻Liquid Reserve**
 - >Thermal
- > Capacitors
- Piezo-Electric Crystals
- > Energy Harvesters

Armaments

- Pulse Power Supply
- Pulse Forming Networks
- Capacitors
- Switches
- Generators
- Batteries

Technical Challenges

Increased ENERGY / POWER Density

Reduced Volume / Weight

- G-Hardening (80,000 G's)
- Cold Temp Performance(-45F)
- Shelf Life (≥ 20 years)

- High Rep Rate
- Peak Power vs. Avg Power
- Fast Rise Times
- Waveform Variability

Energy Harvesting- Munitions

Hybrid Energy System prototypes that provide required power for guided missiles and projectiles thru integrated functionality

Energy Harvesting - Armaments

Energy Harvesting from Armament Systems by Collecting Waste Energy During Operation.

Gun Tube Heat (Thermal)

Thermo PhotoVoltaic

In this July 31, 2008, photo released by General Motors, a module for a thermoelectric generator is shown in Warren, Mich. The generator, which converts exhaust heat to electricity, could improve fuel economy. (General Motors, Lee Short/Associated Press)

Component Cooling (Peltier Cooler)

Semi Conductor (p & n-type)

Image found at www.newark.com

Solid State Energy Storage - Munitions

Electrochemical Storage - Munitions

Scalable and flexible architectures that will meet increasing power requirements

Liquid Reserve Batteries:
Novel Organic Electrolytes

Increased Producibility

Nickel Top Collector (*)
Welded to Bottom Collector
Glass Separator
Bi-Polar Element
Nickel Anode Collector (*)
Welded to Term Plate
Lithium Anode

Energy Generation/Management - Armaments

Solid State Switch for Field and Load

- •Si SGTO
- SiC Thyristor

