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*Edward B. Roberts and Charles Eesley, Entrepreneurial Impact:  The Role of MIT, 2009

Example of impact of research-driven innovation:
Collective revenue of active companies founded by MIT graduates today 

equals the 17th largest world economy*
(Note:  Up from 23rd largest world economy 10 years ago)
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a)  LiCoO2

Battery safety (slightly over)simplified:
Cathode transition metal oxidation state is a key consideration

LiCoO2 and its nickel-containing derivatives used as the positive electrode in lithium-ion batteries 
experience an oxidation of Co3+ to unstable Co4+ (or Ni3+ to unstable Ni4+) as Li+ ions are removed from 
the lattice upon charging.  In contrast, a phosphate-based cathode such as LiCoPO4 undergoes 
oxidation of Co2+ to a stable Co3+ state (or Mn3+, or Fe3+), resulting in a safer, fault-tolerant cell chemistry.
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Conventional
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Thermal runaway accompanied 
by flame and explosion

Comparison of cells with and 
without thermal runaway

Comparison of conventional lithium-ion battery exhibiting thermal runaway followed by flaming and 
explosion, with intrinsically safer phosphate-based lithium ion cells. (Test data performed at Sandia 
National Laboratory on full-size cylindrical cells.  Charged cells are instrumented with thermocouples and 
heated at constant rate to seek thermal events.)

Sandia National Lab test chamber



Li-Ion Powered Hybrid Buses:  >60 Million Road Miles 
(since 2007) 

Daimler Orion VII Bus/BAE Systems

200 kW pack
saves 3400 lb
over Pb-acid

Manufactured 
in Hopkinton, 
Massachusetts



Frequency Regulation Application:
“Hybridizing” Power Plants With Li-Ion Batteries



Automotive Li-Ion Battery Development is Driving Down Battery 
Cost, Improving Performance, Enabling Grid Applications

9

Grid  services, stabilization
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Eight A123 Systems SGSSs™ units 
providing 16 MW installed on the 
grid in Chile, performing “spinning 
reserve” grid stabilization services

Photo courtesy of



Recent Studies Predict Li-ion Battery Pack Costs 
Will Reach $330-$400/kWh at Scale

(McKinsey, 2010)



Pumped Hydroelectric Is Lowest Cost Storage (~$100/kWh):
Can this be done with electrochemical storage?

Ludington, MI

•1872 MW output (21.5 GW 
total in U.S.)

•15,000 MWh stored energy
•2.5 x 1 mile, 842 acres
•0.04 Wh/L energy density
•Elevated 400 ft above Lake 
Michigan



Sample calculation:

How much cost in the active materials needed to supply 1 kWh?

LiFePO4 ($10/kg) – Graphite ($10/kg)
3.3V cell x 303 Ah = 1 kWh

303 Ah/160 Ah/kg = 1.89 kg LiFePO4 ($18.9)
303Ah/340 Ah/kg = 0.89 kg graphite ($8.9)

Answer:  $27.8/kWh ($100/kWh not out of the question)

Other costs:
All the other components in the cell…..

Manufacturing cost
Module and pack cost

Battery management system



Current Lithium Ion Battery Designs Have Too Much Mass, 
Volume and Cost Overhead
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SEMI-SOLID FLOW CELLS
Combining the Best of Rechargeable Batteries and Flow Cells

Yet-Ming Chiang (P.I.)
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Angela Belcher (MIT)
Paula Hammond (MIT)

Pimpa Limthongkul (24M P.I.)

One Alternative Approach:



Aqueous Flow Batteries

Example:  Vanadium redox chemistry (1.2V cell)

Positive electrode: VO2+ + O2-→ VO2
+ + e- V=0.9 V vs. H2/H+ electrode

Negative electrode: V3+ + e-→ V2+ V=-0.3 V vs. H2/H+ electrode

VRB 2 MWh system at 
Tomamae 4-6 MWh wind farm



But:  Solid Ion Storage has >10x Higher Concentration of 
Redox Species than Aqueous Solutions

Redox Active Material Molar Concentration of 
Active Species

Typical aqueous flow cell 
catholyte or anolyte* 1-2M

LiCoO2 51.2M Co3+

LiFePO4 22.8M Fe2+

LiC6 21.4M Li+

*e.g., Na-Br, Zn-Br, vanadium redox
Review article: C. Ponce de León, A. Frías-
Ferrer, J. González-García, D.A. Szánto, F.C.
Walsh, J. Power Sources, 160, 716-732 (2006)

Assume 50 vol% solids in suspension:
• ~10x higher charge capacity conventional aqueous flow 
cells (vanadium redox, zinc-bromine)

• 2-3x higher cell voltage for nonaqueous chemistry
• 20-30x higher energy density than aqueous solutions



Semi-Solid Flow Cell (SSFC) Approach

• How to build a reel-to-reel 
battery that maximizes the 
utilization of active 
material?

• Need flowable solid form, 
hence semi-solid fuels

• Concentrated yet flowable
colloidal suspension of solid 
storage compounds that is 
electronically and ionically
conductive



What it looks like in the lab

“Cambridge
Crude”



Semi-solid Flow Cell Test
Galvanostatic charging of a LiCoO2–based suspension

undergoing continuous flow at 20.3 mL/min rate



To replace this (15,000 MWh, 842 acres)

How many 40ft containers?
(2385 ft3, 61.46 m3, 61,500L)

(Footprint:  40’ x 8’)

Need:
• 200 Containers (nonaqueous)

64,000 sq ft (1.5 acres)

Projected Storage Density:  Ludington (2 GW, 15 GWh) 
Equivalent Using 1 MW, 7.5 MWh, SSFC Units



Also Some Interesting Possibilities for Transportation



Questions?


