Small and Modular Nuclear Reactors: The Hyperion Power Module 2010 Advanced Energy Conference

Jeffery L. Boaz, PMP Director, HPM Product Line, Hyperion Power

8 November 2010

Copyright 2010, Hyperion Power Generation Inc. All rights reserved.

Reactor Sizes

Large Traditional Light Water Reactors: • AP1000, EPR

Medium-Sized Reactors: <700 MWe • CANDU, NGNP

Small & Modular Reactors (SMR): <300 MWePRISM, NuScale, mPower

Mini Power Reactors (MPR): <50 MWe • HPM, 4S

HPM Applications

Niche Markets

- Remote off-grid community power
- Dedicated power
 - hospitals, factories, foundries, government centers, water treatment, irrigation, universities
- Baseload for renewable energy
- Remote mining, oil production & refining
- Military facilities

Operations subject to regulatory authority of host country

Market Goal: generate electricity for < US\$0.10 per kWh anywhere in the world

Initial Market Pull

HPM Key Characteristics

1. Transportable

• 1.5 x 2.5 meter unit fits into standard fuel transport container

2. Safety

- All credible accident scenarios resolved within the design
- Underground siting safe from natural & manmade events
- Lead bismuth (LBE) is non-reactive in air and water, and provides shielding during transport

3. Minimal In-core Components

- Operational reliability is enhanced by the reduction of moving mechanical parts
- Market Goal: Generate electricity for < US \$0.10 per kwh
- Each unit will generate approximately 70MWt and 25MWe
- Overnight costs at \$2,000 \$4,000 per KW capacity

4. Sealed Core – Safe and Secure

- Factory sealed
- No in-field refueling
- Operates at ambient pressure; no pressure vessel
- 5. Operational Simplicity
- Operation limited to reactivity adjustments to maintain constant temperature output

6. Isolated Power Production

- Steam and electric components separated from reactor for maintenance & safety
- Allows existing generation facilities to be retrofitted (HPM replaces heat source)

Hyperion Power Module Conceptual Plant Configuration

Copyright 2010, Hyperion Power Generation Inc. All rights reserved.

HPM Technical Overview

Reactor Power	70MW thermal
Electrical Output	25MW electric
Lifetime	7 – 10 years
Size (meters)	1.5w x 2.5h
Weight (tonnes)	Less than 50 (Incl. vessel, fuel and
	primary coolant LBE)
Structural Material	HT-9 or T-91
Coolant	LBE (45% Pb, 55% Bi wt%)
Fuel	HT-9 or T-91 clad, uranium nitride
Enrichment (% U-235)	<20%
Refuel on Site	No
Sealed Core	Yes
Passive Shutdown	Yes
Active Shutdown	Yes
Transportable	Yes – intact core
Factory Fueled	Yes
Safety & Control Elements	Two redundant shutdown systems

HPM NSSS Simplified Diagram

Copyright 2010, Hyperion Power Generation Inc. All rights reserved.

Reactor Vessel Plan View

Radial Reflector (SiO or Al_2O_3)

UN Fuel

Coolant Down-flow

Internal Core Structure

Downcomer

External vessel

NRC Licensed Shipping Cask

- Vessel and core designed for transport in licensed cask envelope
- Working with cask designer on differences in:
 - Weight
 - Volume
 - Decay Heat
 - Crit Safety

Summary

- HPM design will:
 - Demonstrate a high level of safety (e.g., underground containment)
 - Demonstrate security (e.g., sealed vessel, no onsite refueling)
 - Demonstrate safeguards (non-proliferation) goals by burning TRU and generating comparable Pu to LWRs (wt %) w/ higher burnup
 - Meet customer requirements
 - Optimized for operational life & reliability

