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Outline of Today’s Talk

• State of the Art and Emerging Challenges in the Wireless PHY

– Key Enablers of the State of the Art: 4G

– Challenges for the Emerging Generation: 5G & Beyond

– Open Problems & Potential Solutions

• Two Fundamental Approaches

– Physical Layer Security

– Finite-Blocklength Fundamentals
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• Exploiting spatial diversity:

– MIMO, cooperation & relaying

• Exploiting frequency diversity:

– OFDMA

• Approaching the Shannon limit:

– Iterative decoding (Turbo, LDPC)

Key Enablers of the State-of-the-Art



• Always capacity, reliability, and now, energy efficiency

• In the emerging generation, supporting:

– Internet of Things (IoT): 

• 100’s of billions of terminals, densification, low complexity

– Autonomy & telecontrol: 

• low latency and very high reliability

– Immersive experiences: 

• very high bandwidth streaming

Challenges for the Emerging Generation



• Densification & interference management:

– C-RAN, massive MIMO, mmWave, energy harvesting 

• Capacity enhancement:

– Full duplex, NOMA, caching

• Security in IoT:  

– Physical layer security Ö

• Short packet transmission:  

– Finite-blocklength fundamentals Ö

Open Problems & Potential Solutions



Physical Layer Security 



• Key Techniques for Improving Capacity & Reliability:

– MIMO (Multiple-Antenna Systems)

– Cooperation & Relaying

– Cognitive Radio 

The PHY: From Foe to Friend



• Key Techniques for Improving Capacity & Reliability:

– MIMO (Multiple-Antenna Systems)

– Cooperation & Relaying

– Cognitive Radio 

• What About Security?

– Traditionally a higher-layer issue (e.g.,  APP)

– Encryption can be complex and difficult without infrastructure  

– Information theoretic security examines the fundamental ability of the PHY to 

provide security (primarily secrecy – i.e., data confidentiality)

The PHY: From Foe to Friend



Shannon [1949]: For cipher, perfect secrecy requires a one-time pad.

[I.e., the entropy of the key must be at least the entropy of the source: H(K) ≥ H(M)]

Information Theoretic Secrecy: 
Shannon’s Model
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Information Theoretic Secrecy: 
Wyner’s Model
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“The Wiretap Channel”

• Tradeoff: reliable rate R to Bob vs. the “equivocation” H(M|Z) at Eve

• Secrecy capacity = maximum R such that R = H(M|Z)

• Wyner [1975]: Secrecy capacity > 0 iff. Z is degraded relative to Y



Physical Layer Security in Wireless Networks

• There has been a resurgence of interest in these ideas, as standard
encryption is impractical for emerging wireless networking paradigms.



Physical Layer Security in Wireless Networks

• In general, the legitimate receiver needs an advantage over
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transmitter, or a better channel.
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Physical Layer Security in Wireless Networks

• In general, the legitimate receiver needs an advantage over
the eavesdropper – either a secret shared with the
transmitter, or a better channel.

• There has been a resurgence of interest in these ideas, as standard
encryption is impractical for emerging wireless networking paradigms.

• The physical properties of radio propagation (diffusion &
superposition) provide opportunities for this, via

- fading: provides natural degradedness over time

- interference: allows active countermeasures to eavesdropping

- spatial diversity (MIMO, relays): creates “secrecy degrees of freedom”

- random channels: sources of common randomness for key generation

[Survey: Poor & Schaefer (2017) “Wireless Physical Layer Security,” PNAS]



• Interference Channels:

• Multiple-Access Channels:

• Relay Channels: Relay cooperates to improve security; or relay is untrusted.

• MIMO Channels: Allows simultaneous secure transmission without rate penalty.

Secrecy in Fundamental Channel Models
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Key Generation from Common Randomness

• Passive Eavesdropper:

– Public discussion (Ahlswede & Cziszár [1993], Mauer [1993])

– Channel reciprocity: joint source-channel model

– Relay assisted: trusted or oblivious

• Active Eavesdropper:

– Channel reciprocity: joint source-channel model

[Survey: Lai, et al. (2015) “Key Generation from Random Channels,” in
Physical Layer Security inWireless Communications, Zhou & Song, Eds. ]
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[Schaefer, Khisti & Poor (2018) – IEEE Trans. Commun.]
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[Schaefer, Khisti & Poor (2018) – IEEE Trans. Commun.]
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[Amarasuriya, Schaefer & Poor (2017) – Proc. Asilomar Conf.]



Finite-Blocklength 
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Encoder Channel Decoder
Source

1, 2, … , M
W Xn Yn Ŵ

• (n,M,ε) code:   P(W≠Ŵ) ≤ ε

• Fundamental limit:  M*(n,ε) = max{M: ∃ an (n,M,ε) code}

• Shannon:  As n      ∞ , ε 0

• In many situations (e.g., short packets) n and ε are noticeably finite.

log M*(n,ε) 
n C    (capacity)

A Fundamental Problem



• Bounds:

• Shannon-Feinstein (1954/57); Gallager (1965)

• Random coding union; dependence testing

Finite n and ε

• Approximation:

• Strassen (1962) – discrete memoryless channels

• New bounds yield – sharper for DMCs;  Gaussian; fading

log M*(n,ε) = n C - √nV Q-1(ε) + O(log n)

V = Var[i(X*,Y*)]   (“dispersion”)

[Polyanskiy, Poor & Verdu (2010, 2011) – IEEE Trans. Inf. Theory]



Example:  AWGN (SNR = 0 dB; ε = 10-3)  
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Applications 
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Short-Packet Energy/Spectral-Efficiency Tradeoff
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Shannon limit
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[Gorce, Kelif & Poor (2016) – Proc. IEEE Globecom]

16-bit packet



Short-Packet Security
Semi-deterministic Wiretap Channel
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Short-Packet Security
Gaussian Wiretap Channel
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Summary

• State of the Art and Emerging Challenges in the Wireless PHY

– Key Enablers of 4G: spatial diversity, OFDMA, iterative decoding, etc.

– Challenges for 5G & Beyond: densification, low latency/high reliability, high 

data bandwidths, etc.

– Potential Solutions: C-RAN, massive MIMO, mmWave, energy harvesting, 

full duplex, NOMA, caching, etc.

• Two Fundamental Approaches

– Physical Layer Security (e.g., the Internet of Things)

– Finite-Blocklength Fundamentals (e.g., optimal short-packet transmission)



Thank You!


