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Evolution of micro‑pores in Ni–Cr 
alloys via molten salt dealloying
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Mingyuan Ge 7, Wah‑Keat Lee 7, Sanjit Ghose 7, Sheng Dai 4,5, Xianghui Xiao 7, 
James F. Wishart 3 & Yu‑chen Karen Chen‑Wiegart 1,7*

Porous materials with high specific surface area, high porosity, and high electrical conductivity are 
promising materials for functional applications, including catalysis, sensing, and energy storage. 
Molten salt dealloying was recently demonstrated in microwires as an alternative method to 
fabricate porous structures. The method takes advantage of the selective dissolution process 
introduced by impurities often observed in molten salt corrosion. This work further investigates 
molten salt dealloying in bulk Ni–20Cr alloy in both KCl–MgCl2 and KCl–NaCl salts at 700 ℃, using 
scanning electron microscopy, energy dispersive spectroscopy, and X‑ray diffraction (XRD), as well 
as synchrotron X‑ray nano‑tomography. Micro‑sized pores with irregular shapes and sizes ranging 
from sub‑micron to several microns and ligaments formed during the process, while the molten salt 
dealloying was found to progress several microns into the bulk materials within 1–16 h, a relatively 
short reaction time, enhancing the practicality of using the method for synthesis. The ligament 
size increased from ~ 0.7 μm to ~ 1.3 μm in KCl–MgCl2 from 1 to 16 h due to coarsening, while 
remaining ~ 0.4 μm in KCl–NaCl during 16 h of exposure. The XRD analysis shows that the corrosion 
occurred primarily near the surface of the bulk sample, and  Cr2O3 was identified as a corrosion product 
when the reaction was conducted in an air environment (controlled amount sealed in capillaries); 
thus surface oxides are likely to slow the morphological coarsening rate by hindering the surface 
diffusion in the dealloyed structure. 3D‑connected pores and grain boundary corrosion were visualized 
by synchrotron X‑ray nano‑tomography. This study provides insights into the morphological and 
chemical evolution of molten salt dealloying in bulk materials, with a connection to molten salt 
corrosion concerns in the design of next‑generation nuclear and solar energy power plants.

Nanoporous metals have attracted significant attention due to their high specific surface area, tunable pore size, 
low density, high structural stability, and high electrical conductivity for various applications such as  catalysts1, 
 sensors2, and energy storage  materials3–5. Dealloying is one of the methods used to fabricate three-dimensional 
(3D) micro/nanoporous materials. By definition, dealloying is a materials process that selectively removes one 
or more compounds from a parent alloy, leaving the remaining element(s) to rearrange and form a porous 
 structure6. Porous materials created by dealloying methods show high efficiency for catalysis and energy storage 
due to large, electrochemically-active surface area in the network  architecture7.

Conventionally, aqueous solution dealloying (ASD) has been a well-studied process that involves free corro-
sion or selective leaching from  alloys8. However, corrosive acids and bases that are commonly used to remove 
the less noble elements, such as  HNO3 and NaOH solutions, produce hazardous wastes during the dealloying 
 process9–11. Moreover, ASD is limited to fabricate porous noble metals such as  Au9,  Pt10, and  Pd12. A range of 
different pore sizes in the nm regime and hierarchical designs have been achieved, such as a ultrafine nanopo-
rous metal by low-temperature dealloying (~ 5 nm pore size)13, an ultrafine spongy morphology that contains 
polygonal pores (~ 12 nm)12, and a hierarchical bicontinuous nanoporous  structure10. Generally, ASD is suit-
able to fabricate ultrafine nano-sized 3D bicontinuous porous materials at the nm and tens of nm length scales. 
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Liquid metal dealloying (LMD) can fabricate nanoporous structures through solubility differences between 
alloy components and a metallic  melt14. Due to the relatively higher reaction temperature compared to ASD, 
the size of the porous structure is generally larger via LMD. With this method, 3D connected open-cell porous 
Ti of ~ 200  nm14,15, truncated cube, spherical polygon and rod-like  Fe16, and nanoporous high-entropy  alloys17 
were fabricated in previous studies. However, an acid solution and chemical etching are required to remove the 
residual metal from the bicontinuous composites to form a porous  structure14. Using a metal in the solid-state 
to drive dealloying processes, known as solid-state interfacial dealloying (SSID) or solid-state metal dealloying 
(SSMD), has also been demonstrated in bulk  materials18 and thin film  forms17,19. In recent research, a vapor-phase 
dealloying (VPD) method was developed to selectively evaporate a component from an alloy in high-vacuum 
by utilizing the vapor pressure differences between the constituent  components20–25. The pore size and porosity 
can be tuned by changing the VPD temperature, time, and composition of the precursor. Overall, the dealloy-
ing methods provide a suite of versatile tools to fabricate 3D bicontinuous open porous metals and metallic 
composites, with pore sizes ranging from nm to tens of nm and to microns.

As an alternative approach, molten salt has been demonstrated as a promising dealloying agent to fabricate 
porous  structures26,27. Molten salt dealloying (MSD) was motivated by the salt-induced corrosive attack of metals 
and alloys in next-generation nuclear reactor  system28, concentrated solar power  plants29–31, and waste incin-
eration  plants32,33. Molten salt corrosion is primarily driven by impurities, including water, oxygen, and metal 
ion contaminants introduced from the environment or structural  materials28,31,34. The phenomenon has been 
widely studied in the context of better understanding corrosion mechanisms to prevent material  degradation28.

According to their redox potentials, Cr can be corroded preferentially from an alloy into the molten salt 
compared with Ni, indicating that Ni–Cr alloy would be a suitable binary alloy for molten salt  dealloying28,35. 
Pore formation in Ni-based structural alloys has been observed in studying microstructural evolution in the 
context of molten salt corrosion  studies36,37, but the emphasis has not been chiefly on dealloying or nanopo-
rous material fabrication. Chloride salts, such as NaCl, KCl, and  MgCl2, are abundant materials and have the 
benefits of relatively low cost, wide operation temperatures, and excellent heat transfer  properties38. Previous 
research has investigated the corrosion behavior of various alloys in chloride salt systems. Binary and ternary 
chloride salt mixtures such as KCl–MgCl2 and NaCl–KCl–ZnCl2 have been used to lower melting points and 
operational temperatures. The corrosion behavior and resistance of a series of Inconel alloys and other Ni-based 
alloys has been studied in several salt  systems36,37,39. A pervasive porous network was discovered in Inconel 601 
after 120 h corrosion in molten NaCl-Na2SO4  salt36. To fundamentally understand molten salt dealloying and 
corrosion phenomena, in situ synchrotron X-ray nano-tomography was applied to a Ni–20Cr micro-wire in 
the KCl–MgCl2 system, providing insights into kinetic evolution of Cr leaching with bi-continuous structural 
 formation27,40. Long-range diffusion was determined to be the rate-limiting mechanism in the MSD, while 
coarsening dominated the morphological evolution of long-term corrosion. Although the kinetics concern-
ing the dealloying and coarsening mechanisms were investigated in the previous study, it was conducted in a 
microwire geometry and limited to a single salt composition under an inert environment. Understanding the 
MSD process in planar, bulk sample systems with a wider range of salts and in an atmospheric environment is 
needed to develop MSD methods to fabricate bicontinuous metals with tunable size and porosity for functional 
applications. The understanding of these processes will also benefit the communities concerned with MSD as a 
detrimental phenomenon leading to materials corrosion.

In this research, we studied MSD in bulk Ni–20Cr foils to form porous structures. During the process, 
Ni–20Cr foil was corroded by molten KCl–MgCl2 in vacuum as well as KCl–NaCl salt mixtures in vacuum and 
in air at 700 °C. 700 ℃ was chosen to be the operating temperature in this was because the melting temperature 
is 664 ℃ for KCl–NaCl (~ 50–50 mol%) and 430 ℃ for eutectic KCl–MgCl2

41,42. Without using hazardous deal-
loying agents, the salt residue can be easily washed away by water. The morphological and chemical evolution 
was characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX), and X-ray 
diffraction (XRD), as well as synchrotron X-ray nano-tomography. The shape and size of the features were deter-
mined by percolation dealloying, coarsening and oxidation reactions. Overall, the work using Ni–20Cr foil and 
binary salt systems provided insights into the feasibility of dealloying bulk alloys in molten salt. This work also 
furthered our understanding on the influence of the salt system and atmosphere in dealloying the bulk material. 
In addition to expanding the molten salt dealloying method to a wider range of alloys, salts and treatment condi-
tions, future fundamental research can build upon these findings to further reveal the underlying chemical and 
electrochemical reactions and materials’ morphological evolution kinetics in molten salt dealloying.

Experimental methods and analysis
Equimolar (1:1) KCl–MgCl2 and KCl–NaCl salt mixtures were selected as the dealloying agent. The  MgCl2 salt 
was purified using fractional distillation from commercial anhydrous salt and titrated to determine the oxide 
content. Details of the purification process can be found in prior  publications27. The purified  MgCl2, KCl (Sigma 
Aldrich, 99.999% trace metals basis, -10 mesh) and NaCl (Sigma Aldrich, ≥ 99.0% purity, powder) were ground 
and mixed with a mortar and pestle in a 1:1 molar ratio inside of a glovebox.

As-rolled, 100 µm-thick Ni–20Cr (Cr 20 wt%) foil (Goodfellow, USA-NI050235) was cut into 2 cm × 2 mm 
strips. Prior to the corrosion experiments, the Ni–20Cr foil samples were cleaned and sonicated by isopropanol, 
ethanol, and deionized (DI) water in sequence. Quartz capillaries (2.0 mm diameter, Charles Supper, 20-QZ) were 
baked out at 500 °C for 45–60 min to remove any moisture or potential organic species adsorbed on the surface.

Three types of samples were prepared: Ni–20Cr alloy with KCl–MgCl2 in a capillary sealed under vacuum, 
and the same alloy with KCl–NaCl in both vacuum and in air-filled sealed capillaries. Throughout this report 
any future references to ‘in air’ dealloying refers to dealloying within the air-filled sealed capillary, not in ambi-
ent environment. Inside an Ar-filled glovebox, one piece of Ni–20Cr foil was inserted into one quartz capillary 
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for each of the reaction conditions and reaction times. A powder of the desired salt mixture (~ 0.3 g) was then 
poured into the quartz capillary. The filled capillary was then connected to a vacuum adapter built in-house and 
transferred out of the glovebox; a quarter-turn instrument plug valve (Swagelok, SS-2P4T4) was closed prior to 
the transfer to ensure that the sample was not in contact with air as shown in Fig. S1a. For samples prepared in 
vacuum, the vacuum adapter with the filled capillary was pumped by a roughing pump for 10 min. For samples 
prepared in air-filled capillaries, the vacuum adapter was open for 10 min to allow the air to fill the capillary. Both 
types of capillaries were then flame-sealed using a miniature benchtop hydrogen torch (Rio Grande, model L45) 
and mounted onto a stainless-steel sample holder designed for capillaries shown in Fig. S1b. The samples were 
then transferred into a box furnace at 700 °C and heated for various designated times: 1, 2, 4, and 16 h. After 
the corrosion experiments, the corroded foil samples were removed from the furnace. The capillaries were then 
broken, and the samples were sonicated in DI water for 20 min to remove residual salts. The corrosion conditions 
for samples used in this study with different heating times are summarized in Table 1.

In order to characterize the cross-sectional morphology of the corroded samples, a cross-sectional specimen 
was prepared by Waldvogel Metallurgical, Inc. The corroded foil samples were repositioned on the top side of an 
aluminum disk and vacuum mounted in a metallographic grade epoxy and cured for 12 h at room temperature. 
The metallographic sectioning was performed with standard grinding and polishing techniques using silicon 
carbide paper, diamond polishing compounds, alumina suspensions, and colloidal silica suspensions following 
the specification ASTM E3 “Standard Methods of Preparation of Metallographic Specimens” and ASTM B487 
“Standard Test Method for Measurement of Metal and Oxide Coating Thickness by Microscopical Examina-
tion of a Cross Section” 43–45. The cross-sectional specimen was coated by Au (50 nm thickness measured by the 
calibrated quartz crystal thickness monitor in the desktop sputter coater (Denton Vacuum, DESK V) for SEM 
analysis) to improve conductivity prior to imaging.

Scanning Electron Microscopy (SEM, JEOL JSM-7600F) was used to obtain surface and cross-sectional 
SEM images. The ligament width of all samples was measured from the SEM images with the surface view; 20 
measurements were taken using Fiji, an ImageJ  package46, and averaged. The thickness of the sample was meas-
ured from cross-sectional SEM images. Three measurements were taken by the built-in distance measurement 
tool in SEM and averaged (Fig. S2). Energy Dispersive Spectroscopy (EDX) analysis was conducted to study 
the elemental distribution within the samples. The SEM and EDX analyses were performed at the Center for 
Functional Nanomaterials (CFN) of Brookhaven National Laboratory (BNL).

The ex situ X-ray diffraction experiment was performed at the X-ray Powder Diffraction (XPD, 28-ID-2) 
beamline at National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory (BNL). The experi-
ment was conducted with a photon beam energy of ~ 67.1 keV (X-ray wavelength at 0.1846 Å) and a nominal 
beam size of 0.5 mm × 0.5 mm. An X-ray detector with 2048 × 2048 pixels was used to obtain the diffraction 
signals, with the size of each pixel being 200 × 200 µm2. Each XRD pattern was calibrated with a Ni standard using 
the python-based software  Dioptas47. The X-ray diffraction analysis in a reflection geometry was also conducted 
for a surface-sensitive measurement by Rigaku SmartLab at CFN, BNL. 2-theta scans were collected using a 1D 
detector with a Cu-Kα radiation (0.04 degrees step size, scan rate: 1.6 deg/min). The angle of incidence was fixed 
at 5 degrees. The X-ray fluorescence signals from the samples were filtered out by the built-in energy discrimina-
tion function in the detector to reduce the background. The phase identification was then conducted using Jade 
(Materials Data, Inc.) and PDF-4+ 2021 commercial software packages.

To further characterize the 3D structure resulting from the corrosion reaction, the Ni–20Cr sample corroded 
in KCl–NaCl in air for 16 h was characterized by synchrotron X-ray nano-tomography. A micro-pillar sample for 
nano-tomography was prepared by focused ion beam milling and lift-out at CFN, BNL. The sample was prepared 
following an established procedure that was detailed in a prior  publication48. The final cylinder was 9–10 µm in 
diameter and ~ 28 µm in height (Fig. S3).

X-ray nano-tomography measurements were conducted at the Full-Field X-ray Imaging (FXI, 18-ID) beam-
line at NSLS-II, BNL. The incident X-ray energy used 8.4 keV, just above the Ni K-edge of 8.333 keV. The sample 
was measured in a fly-scan mode with a rotation range of 200°, an exposure time of 100 ms, and a rotation 
speed of 2°/s. The pixel size for data collection is 20.09 nm which was determined by the magnification cho-
sen for the microscopy (~ 324) and the pixel size of the lens-coupled charge-coupled device (CCD) detector 
(6.5 μm), The data was then further binned with 2 × 2 pixels during the tomographic reconstruction, and hence 
the reconstructed volumes have a pixel size of 40.18 nm. A total of 909 projection images were collected. The 
nano-tomography data was reconstructed with pixel size of 40.18 nm (2 × 2 binned) using  Tomopy49. Visualiza-
tion of 2D pseudo cross-section images and 3D volumes was conducted in commercial software Avizo (Thermo 
Fisher Scientific, v. 9.3) on the reconstructed data.

Table 1.  A summary of experimental conditions for samples used in this study.

Salt mixture
(All 50:50 mol. %) Atmosphere Heating temperature (°C) Heating time (h)

KCl–MgCl2

Vacuum
700

1

KCl–NaCl
2

4

KCl–NaCl Air 16
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Results and discussion
Surface morphological and chemical evolution. Figure 1 shows the surface SEM images of the mor-
phological changes of the Ni–20Cr samples corroded under the three different conditions for 1, 2, 4, and 16 h. 
Large pores and ligaments were observed on the surface of Ni–20Cr foils after corrosion in KCl–MgCl2 in vac-
uum as shown in Fig. 1a. With increasing corrosion time, the porous structure continues to grow, indicating that 
the salt not only corrodes the surface of foil but also progresses into the materials. In Fig. 1a-iii, facets could be 
identified on the ligaments. Coarsening also occurred, which led to smoothening the surface as shown in Fig. 1a-
iv. In Fig. 2, the EDX analysis confirmed that Cr dissolution was the main reaction in this molten-salt corrosion 
process, effectively a dealloying reaction of Ni–20Cr. Approximately 7.0 wt% of Cr remains as residual on the 
surface after corrosion for 1 h.

Figure 1b shows the corrosion of the materials in KCl–NaCl treated in vacuum. The corrosion occured at the 
cracks, forming small pores and particles. The cracks became more dense and continuous after prolonged cor-
rosion time. In Fig. 2b, two different regions were idenified based on the EDX analysis: a Ni-rich region and an 
oxide region. The corrosion in the Ni-rich region is relatively mild since a significant amount of the Cr content 
remains in the system, which only reduced from 20 to 13 wt%. The oxide region contains relatively high amounts 

Figure 1.  SEM images showing the surface morphology of Ni–20Cr alloy corrosion in molten salts under 
different conditions: (a) KCl–MgCl2 in vacuum, (b) KCl–NaCl in vacuum, and (c) KCl–NaCl in air for (i) 1 h, 
(ii) 2 h, (iii) 4 h, and (iv) 16 h. The orange arrows indicate the facets formed on the surface after corrosion. The 
blue arrows indicate the cracks, the red arrows show the pores, and the yellow arrows refer to the ligaments.
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of Cr and O. Since the materials were treated in vacuum, a small amount of trace oxygen may come from the 
salt. Figure 2c displays the evolution of the Ni–20Cr alloy from the corrosion in KCl–NaCl in air. The corrosion 
is more rapid due to the presence of moisture and oxygen in the air. Micropores formed within just one hour of 
exposure. As exposure time increased, the edges of the features formed during corrosion became sharper, which 
was different from the corrosion behavior in KCl–MgCl2 in vacuum where coarsening drove the growth of the 
ligaments and pores, commonly observed in other porous metals created by  dealloying50. As shown in Fig. 2c, 
the Ni-rich regions and the oxide regions were analyzed. The Cr content was lower than 10 wt% in the Ni-rich 
region. For the oxide region, the Cr signal became dominant while the Si content also increased (~ 7 wt%). The 
higher Si content in the samples corroded in air indicated that the molten salt may also react with the quartz 
capillary under the ambient environment.

Cross‑sectional analysis of the morphological evolution. The cross-sectional SEM images of cor-
roded samples are shown in Fig. 3. It can be seen that the corrosion did not progress significantly into the bulk in 
both the KCl–MgCl2 and KCl–NaCl in vacuum, with a corrosion depth only ~ 1.8 and ~ 1.4 µm after 16 h of reac-
tions, respectively. In contrast, when Ni–20Cr foil was corroded in molten KCl–NaCl in air, the moisture and 
oxygen in the system will drive the corrosion, forming a relatively thick  Cr2O3 layer (~ 2.5 µm). The corrosion 
depth of ~ 2.5 µm was also further into the bulk materials compared with the other two conditions conducted 
under vacuum. As shown in Fig. 4, the EDX analysis shows that the Cr and O contents are higher in the region 
near the surface. Chromium and  O2 from the air react to form the  Cr2O3 layer. However, the EDX mapping 
shows that the corrosion cannot progress to the deeper region and oxygen is only distributed on the surface and 
in pores. The corrosion may be limited by the oxidation with relatively lower oxygen in the environment. The 
amount of Cr in the foil is approximately 100 times higher than  O2 in the air-filled capillary. However, other reac-
tion mechanisms may also need to be considered. For instance, literature has shown that molten salt corrosion 
can continue to progress in an inert environment. Further analysis should consider the competition and balance 
between the mass transport and reaction kinetics.

Feature size analysis and thickness analysis. The average ligament width with the standard deviation 
was quantitatively analyzed by SEM images (20 measurements in each image) as shown in Fig. 5a. The feature 
size increased significantly up to 1.28  µm from 0.66  µm after corrosion in KCl–MgCl2 in vacuum. The full 

Figure 2.  SEM images and elemental analysis of Ni–20Cr alloy corrosion in molten salts under different 
conditions for 1 h: (a) KCl–MgCl2 in vacuum, (b) KCl–NaCl in vacuum, (c) KCl–NaCl in air, and (d) the 
elemental analysis by EDX.
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analysis is shown in Fig. S4 (Supporting Information). The increasing feature size here primarily corresponds to 
a coarsening process, commonly observed in porous metallic structures formed by  dealloying51,52. In contrast, 
the corrosion in KCl–NaCl in both vacuum and air formed smaller ligament sizes that did not change during the 
16 h of exposure. The slower morphological coarsening may be attributed to the presence of the oxides, primarily 
due to the use of a less pure NaCl starting material where a higher water and oxygen contents may be present. 
It has been shown in prior studies that surface oxides or doped elements can create defects, thereby acting as 
diffusion barriers to slow down or even prohibit the coarsening of bicontinuous  structures52–55. The process may 
benefit certain functional applications where a smaller ligament size and thus higher surface areas are desirable 
to maintain a higher surface reactivity.

The foil thickness versus reaction time was measured in the cross-sectional SEM micrographs shown in 
Fig. 5b. During corrosion in KCl–MgCl2 salt, the thickness of the Ni–20Cr foil did not change significantly in 
the beginning but decreased to ~ 94.88 µm after 16 h of corrosion, likely due to the loss of material. However, 
the corrosion in KCl–NaCl in vacuum did not alter the thickness of the foils significantly. The variation of the 
thickness throughout the 16 h reaction is < 1.0%, and the thickness remains at 104.06 µm, similar to the initial 
thickness of 104.57 µm, since most impurities are removed from the vacuum system. It can be seen that the 
thickness of the Ni–20Cr foil after 1 h corrosion in KCl–NaCl in air increases significantly to 107.31 µm, likely 
due to the newly-formed  Cr2O3 oxide layer.

Figure 3.  SEM images showing the cross-section view of Ni–20Cr corrosion in molten salts under different 
conditions: (a) KCl–MgCl2 in vacuum, (b) KCl–NaCl in vacuum, and (c) KCl–NaCl in air for (i) 1 h, (ii) 2 h, 
(iii) 4 h, and (iv) 16 h.
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X‑ray diffraction characterization. Figure 6A shows the XRD analysis results of Ni–20Cr foil corroded 
in the molten KCl–MgCl2 and KCl–NaCl salt mixtures in vacuum and air. The positions of characteristic peaks, 
(111), (200), (220), (311), remain unchanged after corrosion, indicating the bulk of the sample remains mostly 
as Ni–20Cr, or only partially becomes Ni-rich from the Cr leaching. Here, the XRD measurement in transmis-
sion geometry is not sensitive enough to detect the corrosion products on the surface. A zoom-in view of the 
XRD analysis is shown in Fig. 6c, and no  Cr2O3 peaks were identified in the transmission geometry. Using the 
XRD analysis in the reflection geometry, the presence of the  Cr2O3 phase (JCPDF Card No.:01-073-4336) was 
confirmed for the sample reacted in air. In Fig. 6b, the  Cr2O3 peaks were identified in the diffraction pattern with 
diffraction peaks at Q values of 2.357 Å−1 (104), 2.533 Å−1 (110), 3.757 Å−1 (116), and 4.388 Å−1 (300). The for-
mation of  Cr2O3 was confirmed within the oxide layer in cross-sectional observation. In aqueous hot corrosion 
studies of steel in a saturated solution of NaCl, it was shown that Cr and  Cr2O3 could react with NaCl in the pres-
ence of oxygen to form  Na2CrO4  (Cr6+), a carcinogenic compound as with other Cr (VI)  compounds56. Here we 
only identified  Cr2O3 as the reaction product. The  Na2CrO4 formation may be inhibited due to the low amount 
of  O2 in the environment, which could play a key role in impacting the surface-mediated  processes57 including 
corrosion as shown in a recent multimodal  study58 but also other functional properties such as catalytic reactivi-
ties. The effect of a molten salt environment in contrast to the aqueous corrosion environment should also be 
discussed further. Note that  Cr2O3 has been found to play a key role in other corrosion studies.

With the oxygen in the environment, the corrosion was enhanced, and chromium oxides formed. The newly-
formed oxides may be beneficial or disadvantageous for the porous materials depending on the application. On 
one hand, the oxides can function as catalysts. The  Cr2O3 nanoparticles are non-noble metal catalysts for CO 
oxidation with high performance at low  temperature59. The oxides can also be assembled into composites such 
as Ni/NiO–Cr2O3 composite, which was designed as an electrocatalyst for hydrogen evolution reaction (HER) 
in alkaline  electrolyte60. During the HER cycle, the  Cr2O3 component can stabilize the  NiOx component and 
maintain the catalyst’s  activity60,61. However, the oxide layer may also hinder the catalyst efficiency for porous 
metal and nanoparticles. In previous research on the oxidation of nanoparticles, it was found that the oxidation 
will affect the particle shape, activation energy and hinder the active  site61–64. Oxidation is undesired and destruc-
tive for catalysis if the goal is to fabricate catalysts with pure porous metals. Overall, it is critical to consider the 
presence of the oxides on the surface when designing porous metals through the molten salt dealloying method 
in an air-filled environment.

3D morphological analysis by X‑ray nano‑tomography. The Ni–20Cr foil corroded in KCl–NaCl 
in air for 16 h at 700 °C was characterized by X-ray nano-tomography to observe the 3D morphology of the 
porous structure (Fig. 7). The surface morphology was preserved by a Pt protection layer. The surface became 
rough after corrosion. Figure 7b shows the 2D cross-sectional images along with the depth direction from the 
side surface. Beneath the surface significant pore formation was observed, especially near the surface of the foil 
where corrosion was severe, showing both cracks and large pores. In contrast, in the deeper region, there was 

Figure 4.  Morphological and elemental analysis of Ni–20Cr corrosion in KCl–NaCl in air for 16 h: (a) Cross-
sectional SEM image, (b) elemental analysis by EDS, (c) element mapping by EDX showing the elemental 
distribution.
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less corrosion with mainly grain boundary cracks as also seen in the literature of molten salt  corrosion28,65,66. It 
is known that atoms within the grain boundary have fewer nearest neighbors on average than the atoms within 
the grains, and therefore are more susceptible to corrosion  atacks8. When molten salts react with the Ni–20Cr, 
Cr atoms within the grain boundaries would be preferentially dissolved first, leaving intergranular cracks. The 
larger pores suggest that the corrosion has propagated into the grains with longer heating time. Additionally, 
from both the pseudo cross-sectional images and 3D morphological analysis (Fig. 7c and Supplementary Movie 
1), the grain boundary cracks were not yet present throughout the whole sample but mostly connected, with the 
deeper region >  ~ 3 μm remaining mostly intact. This may be because the tortuous and narrow grain boundary 
path hindered the transport of the molten salt and specifically the inward diffusion of the corrosive impurities 
or the outward diffusion of the corrosion products, thereby slowing down the overall grain boundary corrosion.

Conclusion
In this work, molten salt dealloying was applied to bulk foils to study the morphological and elemental evolution 
when forming a porous structure. The pore formation of Ni–20Cr foils was investigated in three molten salt con-
ditions: KCl–MgCl2 in vacuum, and KCl–NaCl in vacuum and in air, for reaction times of 1–16 h at 700 °C. The 
selective corrosion formed micro-pores and ligaments on the surface of Ni–20Cr foils while the corrosion depth 
was identified to be ~ 1–2 µm. The results showed that molten salt dealloying may be more suitable to fabricate 
porous structures in thin samples such as films or micro-particles. Future studies will investigate if the porous 
structure can progress deeply into a bulk sample in molten salt dealloying with a longer corrosion time, or if the 
corrosion process may be prohibited by a slowing down of long-range diffusion. The EDX analysis revealed that 
Cr leaching is the main reaction during the process. The oxide regions were also determined to contain higher 

Figure 5.  (a) Average ligament width in Ni–20Cr foils after corrosion in different molten salt conditions as a 
function of reaction time at 700 °C. The values for standard deviation of the measurements are also labeled as 
error bars. (b) Thickness of Ni–20Cr foils versus reaction time after corrosion in different salt conditions as a 
function of reaction time at 700 °C.

Figure 6.  (a) XRD patterns of Ni–20Cr foils before and after corrosion in different molten salt conditions 
for 1 h at 700 °C. The peaks correspond to Ni–20Cr. (b) Comparison of XRD pattern of Ni–20Cr foils after 
corrosion in KCl–NaCl in air, with transmission versus reflection geometries. The main peaks correspond to 
Ni–20Cr, with  Cr2O3 peaks labeled with triangles. A zoom-in view of (b) is shown in (c) to focus on the  Cr2O3 
peaks. The x-axis was converted to the Q-space for comparing the signals measured with different incident 
X-ray energies in the laboratory and synchrotron instrument.
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Cr and O contents. This oxide was identified as a  Cr2O3 phase by XRD in a reflection geometry. During corrosion 
in KCl–MgCl2 under vacuum, the feature size increased drastically due to coarsening. In contrast, the corrosion 
behavior in the other two conditions was not affected by coarsening with relatively small feature size, likely due 
to the presence of a higher oxide content because of the use of the lower-purity NaCl. This work expanded our 
fundamental understanding of MSD and further explored the feasibility of using MSD to fabricate porous struc-
ture in different salt systems. Future work may continue exploring MSD under the influence of different alloy 
composition, molten salt species and impurities to establish quantitative measurement to control the porosity, 
pore size and ligament size for creating functional porous materials.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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