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1. Currency futures

The interest rates in the UK rUK = 0.04 and US rUS = 0.06, compounded contin-
uously. The spot price of the UK pound is $1.60 and the forward price for the UK
]pound deliverable in 6-months is $2.00.

(a) Does an arbitrage opportunity exist? Show clearly why one is or is not avail-
able.

(b) If there is such an opportunity, describe the trade and show what the riskless
profit would be.
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2. Chooser option

A standard chooser European option is one in which the option holder has the right
to decide if the option is a put or a call at some point prior to the expiry of the
option. We assume that the strike price K is the same for both the put and call.
To simplify the algebra assume the current time is 0, the time at which the choice
must be made is τ , and the expiry is T with 0 < τ < T . Under the risk neutral
measure Q the price of the option is

F (0) = e−rτEQ[max(C(τ |K,T ), P (τ |K,T )].

That is the current price of the chooser is the risk-neutral expected value of the
maximum value of a put and a call at the choice point τ . Derive a solution to F(0)
above using, as needed, vanilla European puts and calls and cash positions held or
borrowed.
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3. Tangent portfolio

You have one unit of capital available and are a mean-variance optimizer. Let µ
denote the return mean vector, Σ the return covariance matrix, rf the risk-free
rate, and x the asset allocation vector. Assume that assets can be shorted. Also
assume that investments can be funded by borrowing cash at the risk-free rate and
that unused capital can be invested at the risk-free rate. In this framework, the net
cash position is

1− 1Tx = 1−
∑
i

xi.

(a) Formulate a quadratic program whose solutions represent the mean-variance
efficient set of portfolios.

(b) Produce a closed form solution x* that represents the tangent portfolio in the
efficient set above.
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4. Power law tails

A distribution is said to have a power law tail if its survival function has the form:

Prob(R > r) = 1− F (r) = L(r)r−α, α > 0,

where F (r) is the cumulative distribution function of R and L(r) is a slowly varying
function such that

lim
r→∞

L(λr)

L(r)
= 1, for any λ > 0.

For return distribution with a power law tail, demonstrate mathematically which
moments (i.e., E(Ri), i = 1, 2, 3, . . . ) of R exist depending upon the value of the
tail exponent α.
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5. Factor models and mean-variance optimization

You are given the factor model for the assets whose return vector is r(t) with factor
returns f(t) and noise term ε(t):

r(t) = α + Bf(t) + ε(t).

The factors are, by construction, orthonormal; i.e., uncorrelated with variance 1.
Let the mean factor returns be represented by the vector φ.

(a) Express the returns’ mean vector µ and covariance matrix Σ in terms of the
factor model.

(b) Given the mean-variance program below, explain how you can exploit the
structure of the factor model to solve the program more efficiently?

min
{1

2
xTΣx− λµTx

}
(c) Assuming there are n = 500 assets and m = 10 factors, compare the number of

parameters needed to compute the covariance matrix under the factor model
with one computed directly from the raw returns.
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6. Capital asset pricing model

You are given three stocks, i = 1, 2, 3. Each stocks return can be modeled by the
Capital Asset Pricing Model (CAPM):

ri − rf = βi(rm − rf ) + εi.

Let ri = the return of stock i, rf = the risk-free rate, βi = the beta (market
exposure) of stock i, rm = the market return, and εi = the error term for stock i.

Let rf = 0.01, (β1, β2, β3) = (0.8, 1.0, 1.2), E(rm) = µm = 0.08, σm = 0.01, and
(σε1 , σε2 , σε3) = (0.08, 0.06, 0.11).

(a) What is the mean vector µ and covariance matrix Σ for mean-variance port-
folio problem?

(b) Assuming short positions are permitted and no constraints, derive the closed-
form solution of the mean- variance optimization problem to proportionality.

(c) Assuming unit capital (i.e., the allocations sum to 1), apply the proportional
solution derived to the problem above to determine the optimal portfolio.
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7. Brownian motion and its first passage time

Consider a standard Brownian motion Wt with W0 = 0 and the first-passage time
τ = {t ≥ 0;Wt = m}. Show that the density of τ is

fτ (t) =
|m|
t
√

2πt
e−

m2

2t , t ≥ 0.
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8. CIR model for interest rates

Consider the CIR model for interest rate rt

drt = (α− βrt)dt+ σ
√
rtdWt,

where Wt is a standard Brownian motion with W0 = 0.

(1) Show that

rt = e−βtr0 +
α

β
(1− e−βt) + σe−βt

∫ t

0

eβs
√
rsdWs.

(2) Compute the unconditional mean E(rt)
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9. Black-Scholes pricing theory

Suppose the stock prices S1 and S2 follow geometric Brownian motions, dSi,t =
µiSi,tdt + σiSi,tdWi,t, i = 1, 2, where µi and σi are the drift and volatility of the
process, and Wi,t are two independent standard Brownian motions with Wi,0 =
0. Assuming constant interest rate r, perfectly divisible securities, zero dividends
and no transaction costs. Consider a European type financial claim that pays
max(S1,T/S2,T − K, 0) at maturity T . (1) Derive the differential equation for the
price of the option. (2) What is the price of the financial claim at time t?

9



10. ES in ARMA-GARCH model

Consider the following ARMA(1, 1)-GARCH(1, 1) model for the daily return rt of
an asset:

rt = θrt−1 + ut + ψut−1, ut = σtεt, σ2
t = ω + αu2t−1 + βσ2

t−1,

where εt are independent and identically distributed standard normal random vari-
ables, and θ, ψ, α, β satisfy conditions that make rt stationary. Compute the 99%
2-day expected shortfall of a long position at time t.

10



11. Properties of Gumbel copula

Consider the following Gumbel copula

CGu
θ (u1, u2) = exp{−

[
(− log u1)

θ + (− log u2)
θ
]1/θ}, θ ≥ 1 (1)

Show that, when θ →∞, CGu
θ (u1, u2) becomes a 2-d comonotonicity copula.

11



12. Tail behavior of AR-GARCH models

Consider the GARCH(1,1) model

yt = αyt−1 + σtεt, σ2
t = ω + αy2t−1 + βσ2

t−1,

where εt are independent and identically distributed standard normal random vari-
ables. Compute the kurtosis of the series {yt} and show it is larger than 3.
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