ACTIVE THERMOSYPHONS FOR POWER-PLANT COOLING: MODELING AND EXPERIMENTS

Tao He¹, Wei Zhong¹, Sean Hardick¹, Tom Butcher², Rebecca Trojanowski², Tim

Wagner³, Yaroslav Chudnovsky⁴, William Worek⁵, Jon P. Longtin¹

¹ Stony Brook University, ² Brookhaven National Laboratory, ³ United Technology Research Center, ⁴ Gas Technology Institute, ⁵ Texas A&M—Kingsville

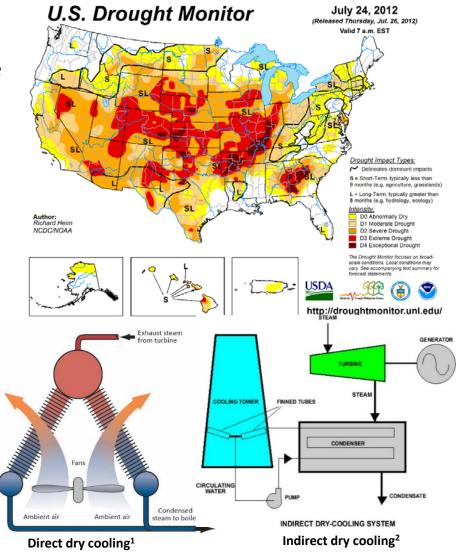
2018 Advanced Energy Conference

New York, NY March 27, 2018

1

ARPA-E

- <u>A</u>dvanced <u>R</u>esearch <u>P</u>rogram <u>A</u>gency for <u>E</u>nergy (ARPA-E)
- Modeled after DARPA
 - Strategic, well-defined programs
 - Substantial resources
 - Milestone-driven; not basic research
 - Commercialization is essential
- Focused themes or programs
 - Typical: \$20~35 M; 8 ~ 14 teams; 2 ~ 3 year projects
- This program: ARID (<u>Advanced Research In Dry cooling</u>)
 - Goal: Technologies to improve performance of dry-cooled power plants, especially in arid regions (e.g., Southwest)

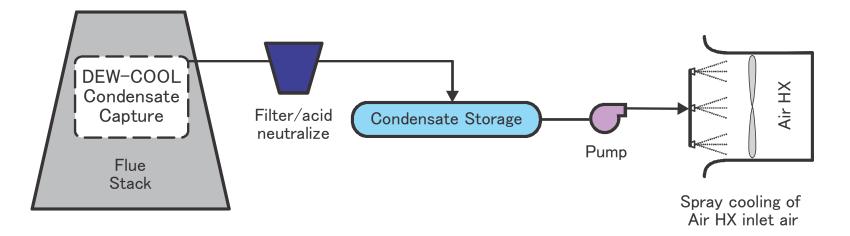

Why Dry Cooling

Wet cooling thermoelectric plants

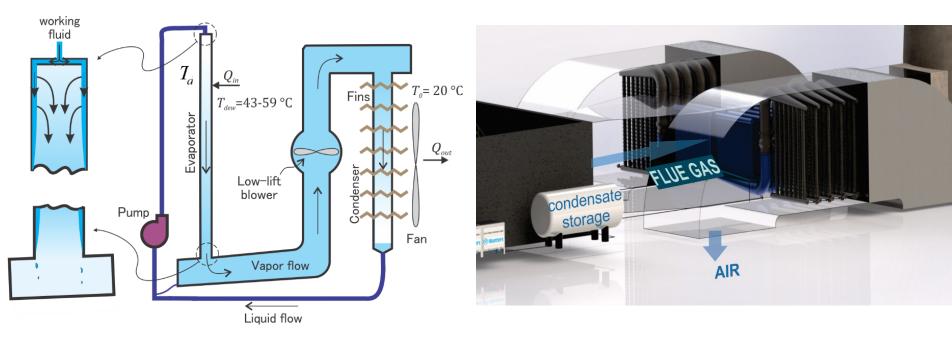
- Withdraw large amounts of fresh surface water
- Water loss through evaporation
- Adverse impact on ecosystems
- Drought threatens continued operation

Dry cooling thermoelectric plants

- Only 1% of all plants in U.S
- Higher cost due to lower heat transfer performance
- 2% production loss of steam turbine
- Extremely hot days: power production reduced 10% ~ 15%

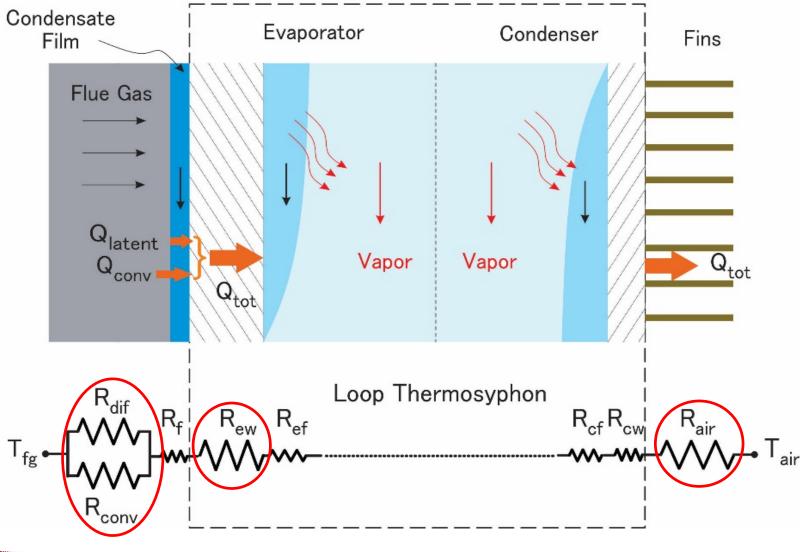


http://cornerstonemag.net/advanced-cooling-technologies-for-water-savings-at-coal-fired-power-plants/


2. http://decarboni.se/publications/evaluation-and-analysis-water-usage-power-plants-co2-capture/14-state-art-technology

- <u>Goal</u>: Improve cooling performance of air cooled condenser by using evaporative cooling
 - Combustion of fossil fuels produces water vapor
 - Condense some of this water vapor for evaporation

 DEW-COOL: Deferred Evaporation of Water Condensate Obtained Locally


Water Harvesting using Active Thermosyphon

- Water as the working fluid inside the thermosyphon (environment-friendly, inexpensive)
- Pump actively circulates water, unlike traditional thermosyphon
- High–*k* polymer material evaporator
- Air-cooled condenser
- Optional low-lift blower increase performance in very hot conditions

Modeling of the Thermosyphon

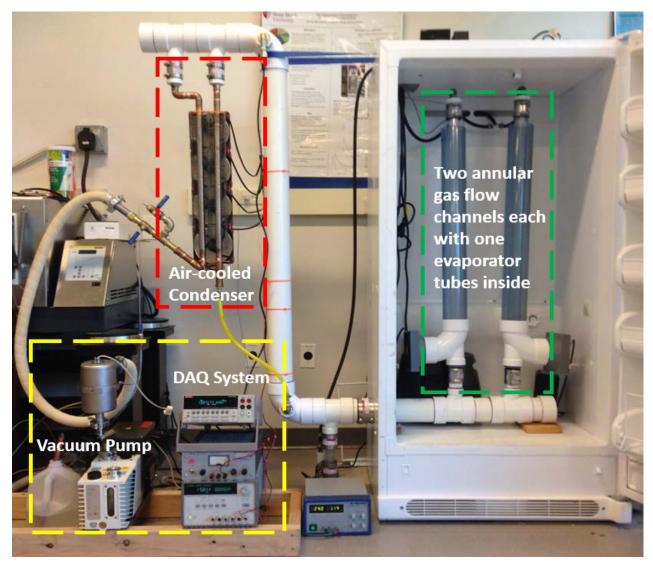
Modeling Work (cont)

- Analytical model developed that includes
 - Interior thermosyphon physics (flow, evaporation, condensation)
 - Exterior heat transfer and condensation (using NTU method + literature correlations)
- Model predicts
 - Heat transfer
 - Internal temperatures
 - Condensed water collection rate
- Full power plant simulation done in Aspen[™]
 - Plant efficiency vs. temperature
 - Levelized cost of electricity

Graphite-polymer composite for evaporator tubes

THERMAL PROPERTIES OF PP-GRAPHITE

Heat resistance long term	90	°C
Specific heat capacity c _p	1.21	J/(g*K)
Thermal elongation	29 x 10-6	1/K
Thermal conductivity in plane (injection moulding)	26.6	W/(m*K)
Thermal conductivity through plane (injection moulding)	4.5	W/(m*K)
Thermal conductivity through plane (extruded tube)*	10-15	W/(m*K)
Heat transfer coefficient on tube **	2316	$W/(m^{2*}K)$


calculated out of practical heat transfer coefficient measurement, no direct measurement possible

** Measured on test rig under follwing conditions: Salinity 65g/kg, mass flow water 0,1kg/(s*m), Temperature heating vapour 80°C, Temperature evaporation: 75,8 °C

- Commercially available: Technoform Kunstsoffprofile, GMBH (Germany)
- Polypropylene (PP) or Polyphenylene sulfide (PPS)
- Thermal conductivity: 15 ~ 16 W/m·K in radial direction (similar to stainless steel)
- Excellent corrosion properties

Experimental Setup

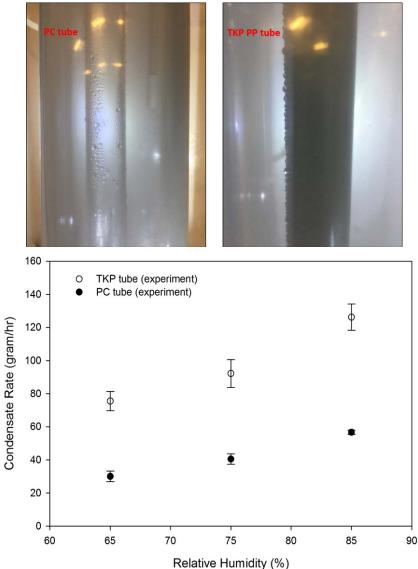
Experimental Details

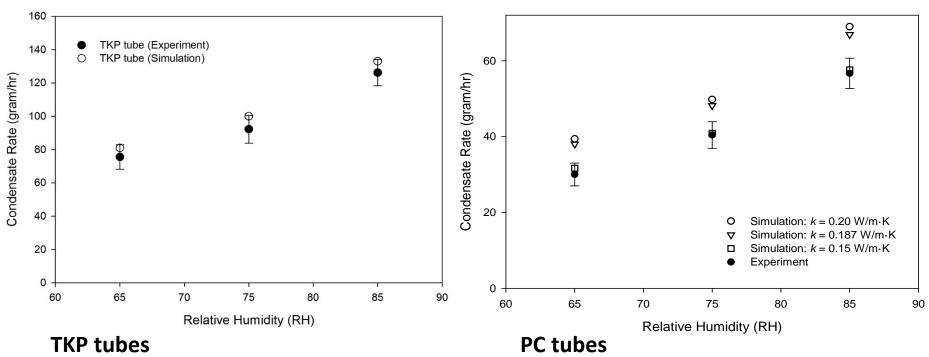
- PC (left) and TKP (right)
- Added 3 in diameter extension tube to measure velocity profile (mass flow)

Measurement	TKP section	PC section
1	4.5 m/s	5.0 m/s
2	4.6 m/s	5.1 m/s

The following test conditions were conducted

Component	Temperature	Relative Humidity
Condition 1	45°C	85 %
Condition 2	45°C	75 %
Condition 3	45°C	65 %


 Condensation rates (gm/hr) for both TKP and PC tube measured over several hours at each condition

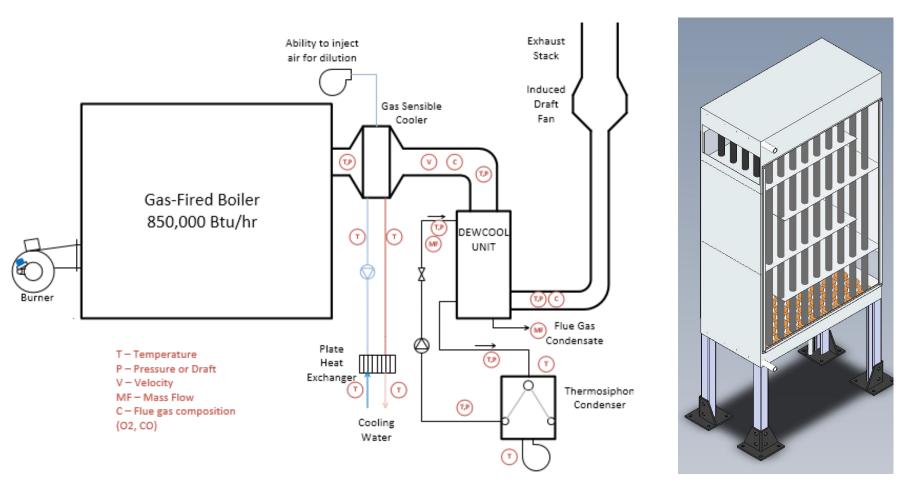

Experimental Results

- The condensate rate increases with the relative humidity for both types of tubes.
- For PC tube, the condensate rate increased by 35% and 89%.
- For TKP tube, the condensate rate increased by 22% and 67%.
- Condensate ratio between TKP tube and PC tube is between 2.2 and 2.5.

Compare Results with Simulation

- 4.5 m/s velocity
- Experiment within 93 ~ 95% of model predictions
- Experimental data is lower than the model
- Trend is accurately captured • Stony Brook University

- o 5.0 m/s velocity
- Experiment within 76 ~ 85% of model predictions
- Experimental data is lower than the model
- Trend is accurately captured


Compare Results with Simulation

- Agreement with TKP tubes is very good; PC acceptable.
- Possible reasons for low values with PC
 - Presence of non-condensable gas in system
 - Will reduce heat transfer and condensation rate for both tubes
 - Thermal conductivity of PC tube not confirmed.
 - Literature k = 0.187 W/m·K and k = 0.20 W/m·K \rightarrow condensation too high
 - Thermal conductivity of polycarbonate may be reduced during extrude process (alignment of polymer strands)
 - $k = 0.15 \text{ W/m} \cdot \text{K}$ gives good fit
 - Presence of droplets on the tube wall not accounted for
 - TKP tube is hydrophilic; thinner droplets

Future work for BNL-Scale Test

A larger scale prototype will be built in Brookhaven National Laboratory (BNL).

Summary

- Thermosyphon-based technology to harvest water from power plant flue gas
- Analytical model developed to predict the condensation performance.
- Lab-scale thermosyphon prototype built to investigate performance using high-performance polymer-graphite tubes as the evaporators.
- Model agreement with composite polymer tube agrees well.
- Larger 10 kW prototype being designed and fabricated at Brookhaven National Laboratory (Dr. Tom Butcher)
- Other applications for technology?
 - Water harvesting for other?
 - High performance heat recovery in combustion systems and buildings?
 - Other applications?

Acknowledgments

 Advanced Research In Dry cooling (ARID) project, funded by Advanced Research Projects Agency-Energy (ARPA-E).

