HOW REGIONAL COOPERATION CAN HELP BRING U.S. OFFSHORE WIND TO THE NEXT LEVEL

ADVANCED ENERGY CONFERENCE NEW YORK, NY

MARCH 27, 2018

BRUCE HAMILTON Director, Energy Practice Bruce.Hamilton@Navigant.com

WHAT FEDERAL-STATE POLICIES AND THEIR INTERACTIONS CURRENTLY PRESENT THE MOST CHALLENGE FOR THE OFFSHORE WIND INDUSTRY?

States play a pivotal role in advancing offshore wind. They can advance the cost reduction cycle with favorable policies or stall the market with excessive restrictions.

IN WHAT WAYS HAS THE OFFSHORE INDUSTRY MADE THE MOST PROGRESS IN THE US? WHERE DOES THE INDUSTRY IN THE US HAVE THE MOST POTENTIAL FOR ADVANCE?

Northeastern and Mid-Atlantic states have created market visibility acting independently. Future progress will be accelerated by regional cooperation in multiple areas.

Current: Individual State Policies	Future: Regional Cooperation
 MA: legislation requires 1.6 GW by 2030 NY: OSW goal of 2.4 GW by 2030 NJ: OSW goal of 3.5 GW by 2030 MD: 368 MW in ORECs to 2 projects CT: RFP for ~200 MW OSW RI: RFP for 400 MW renewables incl. OSW 	 Coordinate timing of directed procurement Green Bank De-risk or pre-permit sites Coordinate transmission build Port and related infrastructure development Public support for vessels Regional supply chain development Basic research

WHICH PORTS ARE MOST PRIMED FOR OFFSHORE PROJECTS AT SCALE?

Most eastern seaboard states have viable candidates for ports to service OSW projects. However, only a handful of ports are close to meeting the ever-increasing requirements.

	Port Requirements to Support a 700 MW OSW Project with 8 MW Turbines	
	Feature	Minimum Requirements
Most common improvement required	Construction & component storage area	60,000-75,000 m ² (646,000-807,000 ft ²)
	Construction/storage area load-bearing capacity	10-20 tons/m ² for foundations, 10 for towers
	Warehouse area	1,000-2,500 m ² (11,000-27,000 ft ²)
	Dockside (quayside) draft depth	7.7 m (24 ft)
	Length of dedicated dockside access	100 m (preferably 200 m)
	Truckload bearing capacity	12 tons

Sources: AWS Truepower, GL/GH, Kinetik Partners, BVG Associates

Most feasible OSW ports:

- New Bedford, MA
- Quonset, RI
- Howland Hook Marine Terminal, NY
- Baltimore, MD
- Portsmouth, VA

Honorable Mention:

- Searsport, ME
- Paulsboro, NJ
- Wilmington, DE
- Moorhead City, NC
- Galveston, TX

