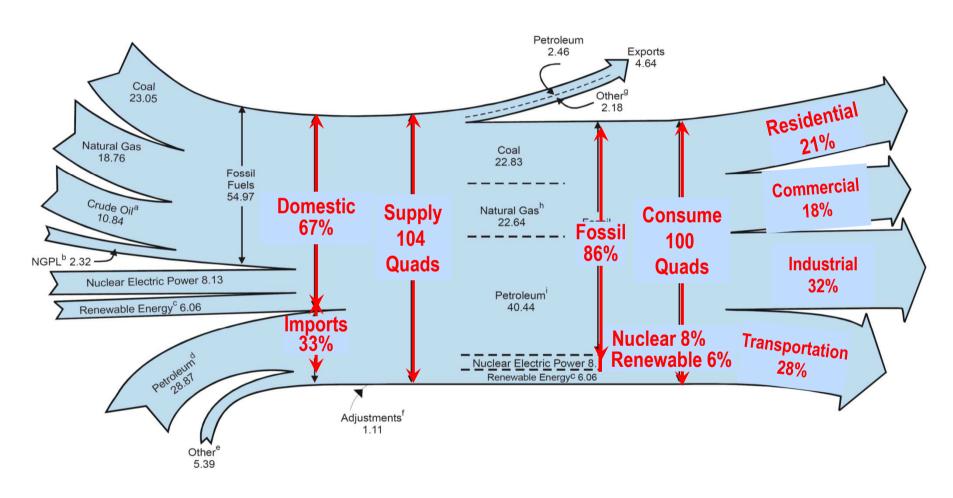
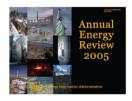
sense and simplicity

Lighting and Net Zero Energy Buildings

Advanced Energy 2011 Buffalo, New York

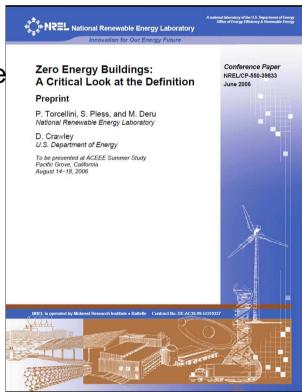

Satyen Mukherjee Philips Research North America Oct 13, 2011


Outline

- Why ZEB Background
- Key Challenges
- Role of Lighting
- Results from DOD test beds
- Summary

U.S. Energy Flow, 2005 (Quads)

86% of primary energy is from fossil fuels, with 69% of the petroleum imported



Definitions

ZEB or ZNEB: Zero *Net Energy Building*Produces more energy on-site than it consumes, on an annual basis.

- Excludes:
 - Transportation
 - Embodied Energy in Water, Materials, Waste
- Net-zero site energy
- Net-zero source energy
- Net-zero carbon
- Net-zero energy cost

Zero Energy Buildings: A Critical Look at the Definition P.Torcellini, S. Pless, M. Deru - NREL D. Crawley - DoE 2006

www.nrel.gov

Challenges

- Wide range of building types
- Variability in requirements geographical, weather
- Drift over time
- Economic Performance
- Flexibility/Adaptability to Changing Needs
- Balancing Energy Consumption with Occupant Comfort and Productivity

Commercial building types

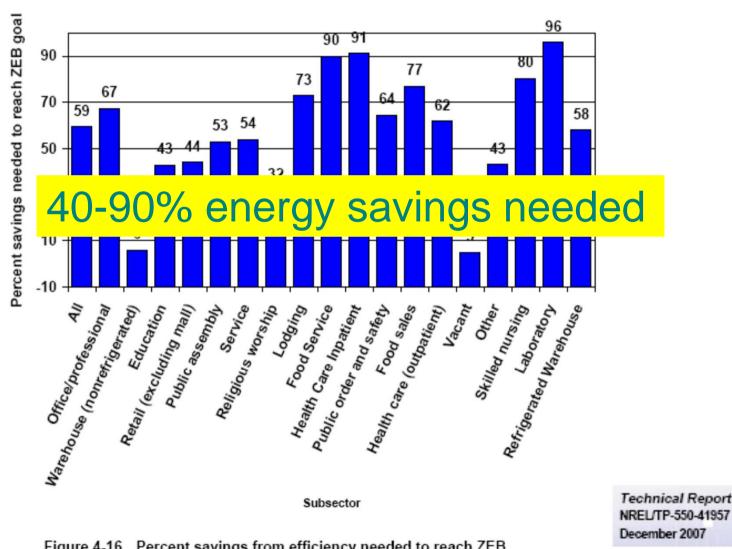
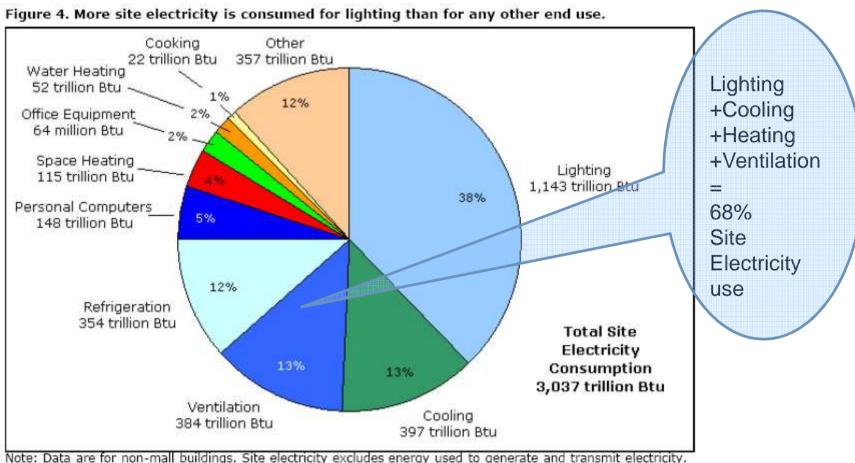
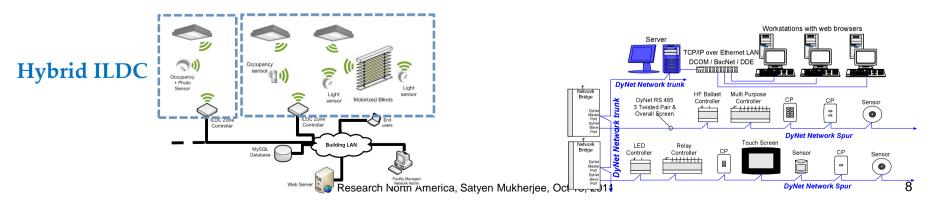



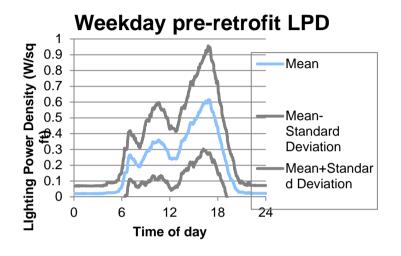
Figure 4-16 Percent savings from efficiency needed to reach ZEB

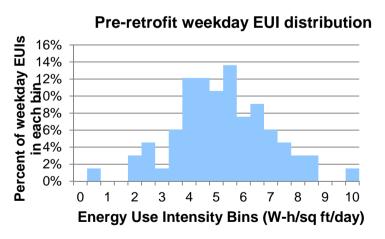
Commercial Buildings Site Electricity Consumption by End Use

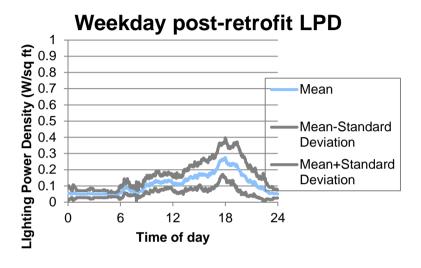

Note: Data are for non-mall buildings. Site electricity excludes energy used to generate and transmit electricity Source: Energy Information Administration, 2003 Commercial Buildings Energy Consumption Survey, Table E3.

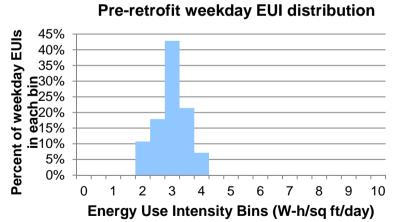

Advanced Lighting Controls: Technology Description

F				
	OccuSwitch Wireless	Dynalite	Hybrid ILDC	
System architecture	Room-based control	Distributed control bldg-wide connectivity	Room/area based control with building-wide connectivity	
Scalability	Room by Room	Scalable from a single room to entire building	Scalable from a single room to wide area control	
Best applications	Single offices; barracks; Retrofits; smaller budget	New construction, major renovation	Multi floor office buildings with daylight areas. Retrofit or new	
In-room Connectivity	Wireless based on ZigBee PRO standard	Wired	Wireless based on ZigBee PRO standard	
Cost advantage	+++ Installation ++ Commissioning	+ Installation +++ Commissioning	++ Installation ++ Commissioning	
Energy adv.	++	++	+++	


OccuSwitch Wireless




Dynalite



Building A—Lighting Power Density

Weekday LPD decreased deeply throughout the day.

Preliminary Performance Summary – June 2011

Building A: Hybrid ILDC – Area covered 1782 sq.ft.

	Code	Post-	Reduction compared
Performance objective	baseline	retrofit	to code baseline
Annual EUI (kWh/sq ft/yr)	4.54	0.82	82%
Peak LPD over a 15 minute period (W/sq ft)	1.81	0.64	65%
Average deviation from specified			
illuminance range (lux)	N/A	1	N/A

Building B: Occuswitch - Area Covered 4821 sq.ft.

_			·
	Code	Post-	Reduction compared
Performance objective	baseline	retrofit	to code baseline
Annual EUI (kWh/sq ft/yr)	4.54	1.74	62%
Peak LPD over a 15 minute period (W/sq			
ft)	1.81	0.9	50%
Average deviation from specified			
illuminance range (lux)	N/A	40	N/A

Building C: Dynalite – Area Covered 6450 sq.ft.

	Code	Post-	Reduction compared
Performance objective	baseline	retrofit	to code baseline
Annual EUI (kWh/sq ft/yr)	4.54	2.90	36%
Peak LPD over a 15 minute period (W/sq			
ft)	1.81	0.82	55%
Average deviation from specified	N1 / A		N1 / A
illuminance range (lux)	N/A	to come	N/A

SOLUTION: A SIMPLIFIED AC/DC HYBRID COUPLED POWER NETWORK

Coupled AC/DC Power

Sources

DC Power

Distribution

Management

Wireless

Controls BACnet TCP/IP

ENERGY SOURCES

AC/DC Site Generation

DC Campus Fuel Cells

DC Photovoltaic

DC Wind Power

AC Line Power

ELECTRO-ACTIVE DEVICES

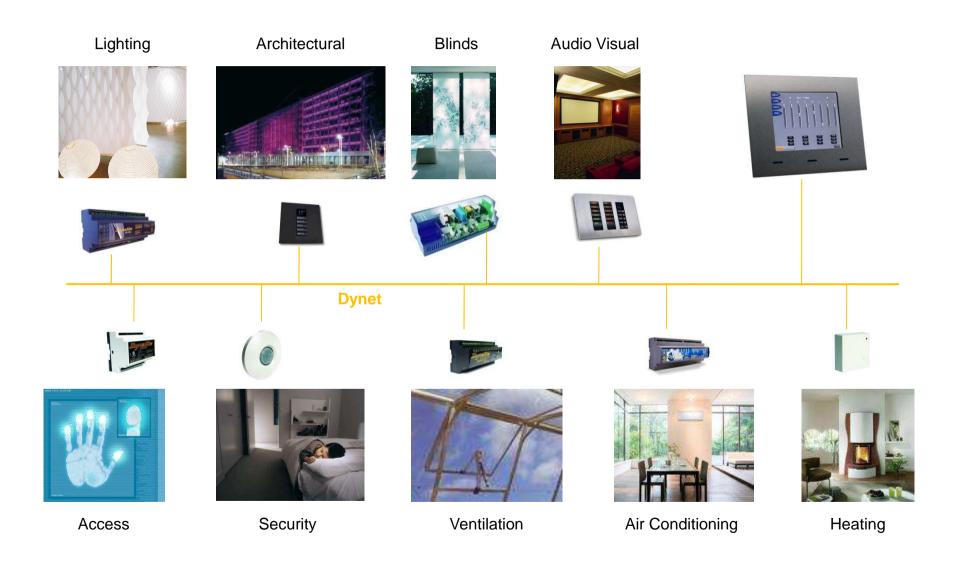
Electronic Lighting

HVAC Actuators

Sensor & Controls

AV/IT Devices

Data & Telecom Centers


Security & Safety

OPPORTUNITY: 30% LESS ENERGY, 15% LESS CAPITAL, 200% MORE RELIABLE

Integrated Solution

NZEB around the Globe

East Asia

Massachusetts, USA

Florida, USA, both source and emissions NZEB, 2010

Singapore planned 2009 educational

Colorado USA

NREL, USA, 2011

The opportunity space

Show the power of conservation by demonstrating conservation of power