Development of CuInGaSe₂ Thin Films for Solar Cell Applications

Harry Efstathiadis Nanoengineering Constellation College of Nanoscale Science and Engineering University at Albany - SUNY

US PVMC Program

US Department of Energy PV Manufacturing (PVMC) Initiative – A Path Towards Supply Chain Collaboration in the US

- Hybrid of industry-led consortium and manufacturing development facility (MDF) models in New York State with capabilities for collaborative and proprietary activities
- Overall investment of \$300 M over 5 years from DOE, Industry, NY State.

College of Nanoscale

Science & Engineering

- Focus on leading solar PV technology CuInGaSe (CIGS) thin films and manufacturing methods
- Expertise of primary partners SEMATECH, CNSE in consortium management, technology development, manufacturing productivity, and workforce development
- Breadth of support partnership with ~80 companies and organizations throughout CIGS industry supply chain

Typical Cu(InGa)Se₂ Device Structure

- Substrate:
 - Soda lime glass Na source, good thermal expansion match to CIGS, low cost
 - metal foil such as 300 or 400 series stainless steel flexible, conductive
- **Back contact layer:** Mo, DC sputtered (0.5-1µm)
- **p-type absorber layer:** CIGS, CIAS direct band gap 1 1.26eV, DC co-sputtering followed by selenization with Se/Ar vapor/gas mixture (1-2µm)
- **n-type buffer layer:** CdS or ZnS, chemical bath deposition (50nm)
- Window layer: ZnO (50nm) and ZnO:Al (200nm), two layers one with high doping and other with low doping, , RF sputtered

• **Top contact/Grid:** Ni/Al, e-beam evaporation (1µm)

CIGS offers lower manufacturing cost while efficiencies are comparable to multi-crystalline Si based devices

Cross section of thin-film CIGS based solar cell device

The Cu/(In+Ga) ratio is favorite to be 0.88-0.95 in the precursor (NREL)

The Ga/(Ga+In) ratio is favorite to be 0.25-0.30 in the precursor (NREL)

Emphasis is given on the deposition of the p-type CIGS, CIAS absorber layer

www.energy.gatech.edu/presentations/tsurek.pdf

Thin Film Solar Cells (TFSC)

College of Nanoscale Science & Engineering

- Low cost materials
 - Film thickness $1 10\mu m$ (c-Si cells thickness 200-300 μm)
- High through put manufacturing
 - Monolithic integration for modules allows glass in/module-out production
 - Can use flexible substrate with roll-to-roll processing
- Direct bandgap materials with high absorption coefficient
 - Compositional tolerance: Cu at. % can vary from 22 to 25 at. %
 - Alloy with Ga, Al, S to engineer band gap 1.04 < Eg < 1.68 eV for 0 < = Ga/(In+Ga) < =1

	$\mathbf{V}_{\mathbf{OC}}\left(\mathbf{V}\right)$	J _{SC} (mA/cm ²)	FF (%)	Efficiency (%)	Comments	
CuInSe*	0.491	40.56	75.15	15.0	NREL	
CuInGaSe*	0.694	35.1	79.52	19.9	NREL	Current state of
CuGaSe*	0.823	18.61	66.77	10.2	NREL	the art in device
CuInAlSe*	0.621	36.0	75.50	16.9	IEC	level
CuInGaS**	0.830	20.9	69.13	12.0	FSEC (Dhere)	
CdTe	0.845	26.1	75.5	16.7	NREL	

Typical I-III-VI₂ materials

*Multi-stage co-evaporation, **Sulfurization of precursors

FSEC- Florida Solar Energy Center, IEC- Institute of Energy Conversion, NREL – National Renewable Energy Laboratory

• The challenge is whether TFSC can demonstrate on large areas their potential for low cost at sufficient performance to compete in select markets with Si

Rommel Noufi and Ken Zweibel, CdTe and CIGS Thin Film Solar Cells: Hi	V _{oc} : open circuit voltage		
J. AbuShama, R, Noufi, and S Johnson, PVSC (2005)		J_{sc} : short circuit current density	
M. A. Green et al., Prog. Photovolt. 17 85 (2009)	cnse.albany.edu	FF : Fill factor	

Research Goals

- COLLEGE OF NANOSCALE SCIENCE & ENGINEERING UNIVERSITY AT ALBANY SUBE UNIVERSITY AT ALBANY SUBE UNIVERSITY OF NEW York
 - Develop of a relative simple, reproducible, and easy to scale up 1-stage and 2stage deposition techniques to enable the fabrication of CIGS and CIAS thin-film solar cells
 - Design the proper combination of substrate, barrier, and seed layers as a template for CIGS growth
 - Define the best processes for deposition of those layers
 - Transfer those processes to reel-to-reel equipment
 - Develop a process to co-sputter CuInGa and CuInAl precursor films of target composition
 - Selenize precursor film using elemental selenium or H₂Se to produce CIGS and CIAS films
 - Correlate process parameters and film characteristics to PV device performance

Cross-section and top view SEM images of CIGS films on Mo/glass

College of Nanoscale Science & Engineering CIGS Evaporation and CdS - Experimental setup

INIVERSITY AT ALBANY State University of New York

- Develop thermal evaporation that produces high efficiency thin film solar cells and has the lowest materials costs with high material utilization driving down the manufacturing cost per watt.
- Thermal evaporation of elemental Cu, In, Ga, and Se.

Chemical Bath Deposition (CBD) of CdS

- Evaluate the simultaneous development of new buffer layers using CBD methods to increase cost-efficiently using more acceptable and cheaper raw materials than CdS
- CdS Bath, 65°C, DI Water, Ammonium hydroxide, Cd sulfate, thiorea
- Develop InS and ZnS as replacement of CdS

I-V Characteristics of Evaporated CIGS

•I-V curve of CIGS Device

Sample ID	Efficiency Grid # (%)									Avg %
CIGS-s8-2	7.62	9.83	9.01	10.28	10.23	10.40	10.21	10.07	9.99	
	10.05	9.98	9.95	9.95	9.98	9.80	9.50	8.92	8.26	9.67

V_{oc} – Open circuit voltage FF – Fill Factor I_{sc} – Closed circuit current Eff - Efficiency _{cnse.albany.edu}

Sputtering Thin Film CIGS: Deposition Goals

- Sputtering followed by batch selenization process (2-step process)
 - High-throughput of 4 x 6 ft. monolithic modules
 - Higher module compositional uniformity

College of Nanoscale

Science & Engineering

- Develop a process to sputter high quality CuInGa precursor thin films
 - Target Composition: **Cu at. % : 48.7 46.8**

In at. % : 37.2 - 35.9 Ga at. % : 16.0 - 15.4

$$0.88 < \frac{Cu}{(In+Ga)} < 0.95 \quad 0.25 < \frac{Ga}{(In+Ga)} < 0.30$$

Monolithic Modules

– Homogeneous and dense films with smooth surface morphology

CuInGa Precursor Co-sputtering

CuInGa Precursor – Co-Sputtering

Con-focal sputtering guns allow simultaneous deposition of precursors resulting in more uniform film composition

RF/DC sputtering tool with:

- **Two target approach:**
- CuGa target (75/25 at. %)
- In target

College of Nanoscale

SCIENCE & ENGINEERING

Performed In target sputtering power study to identify the process conditions leading to desired CIG film composition and surface morphology

Ref.: M. Hansen, H. Efstathiadis, P. Haldar, Thin Solid Films (2009)

Composition of CIG Films

Auger Electron Spectroscopy composition depth profile of CuInGa precursor films on Si substrate

- At low substrate temperature, In segregates toward the surface at a lower rate compared to precursor films deposited at room temperature on Si substrate
- At RT deposition, In atomic concentration increases from 22 to 32 at. % while the Cu:Ga ratio is roughly 3:1

RBS Spectra of CIG Films

- The flat In step from channels 800 to 870 shows an absence of an In concentration gradient versus depth
- The sharp drop off of the Cu, In and Ga steps in the channel range of 450 to 550 indicates a smooth surface morphology
- The sharp increase of In at the Si interface from channels 600 to 650 is due to the In rich phases sticking out of the surface

*Obtained by AFM, RBS: Rutherford Back Scattering

College of Nanoscale

Science & Engineering

CIG Films - Surface Morphology

SEM images of precursor thin films with the desired chemical composition deposited at different temperatures

- Precursor with Cu, In, Ga many deposition options
 - Criteria: low cost, uniformity, materials utilization
 - sputtering commercially available

- Reaction in hydride gases (H₂Se, H₂S) or elemental vapors (Se, S): batch or Rapid Thermal Process (RTP)
- Multi-step reaction pathway to form Cu(InGa)Se₂

X-Ray Diffraction Speactra of CIGS Films

UNIVERSITY AT ALBANY State University of New York

College of Nanoscale

ence & Engineering

XRD, SEM, and EDS characterization on CIGS thin film

• Selenization of CIG precursor film led to the formation of polycrystalline CIGS films with (112) and (220/204) orientations

Sample		EDS (at. %)						
ID	Process	Cu	In	Ga	Se	Cu/III	Ga/III	
UA-1	Precursor	39.26	38.09	9.67	-	0.82	0.20	
UA-2	H ₂ Se @450°C 90min	23.66	24.12	1.14	51.09	0.94	0.05	

• Low Ga concentration detected by EDS, Ga diffused to CIGS/Mo interface during selenization

- Thermal evaporation of CIGS with CBD CdS developed process produced 10% efficiency devices
- Developed a process to co-sputter CuInGa precursor films within the targeted composition range
- Deposited CuInGa precursors at -35°C substrate temperature which exhibit a dense homogeneous structure with smooth surface morphology
- Investigated the selenization process Ga diffused to CuInGaSe/Mo interface during selenization