Self Assembled Heterojunction Solar Cell Active Layers: CFN/USB/CAT Collaboration

Supported in part by the SensorCat program at NYSTAR,NSF-MRSEC

Jennifer A. Segui

PhD student in Biomedical Engineering.

Advisor: Miriam Rafailovich Jennifer received her B.S. in Electrical and Computer engineering from the Illinois Institute of Technology.

Charles T. Black

Scientist and the Group Leader for Electronic Nanomaterials

Center for

Functional

Nanomaterials

Dr. Black received his Ph.D. in Physics from Harvard University in 1996

Sushil Satija:

Senior Scientist Center for Neutron Research, NIST

National Institute of Standards and Technology

STONY BROOK UNIVERSITY

Solar Cells

- 1st generation:
 - Large area, high quality, single junction
 - Typical silicon solar cells- efficient, but very expensive
- 2nd generation:
 - Thin film cells
 - CIGS-CIS, DSC and CdTe
- 3rd generation:
 - Multijunction PV cells
 - Organic solar cells

January 2005 Materials Research Society Bulletin

Objectives

- 1. Morphological control of the P3HT and PCBM phases used in current BHJ solar cells to achieve a more precisely organized and efficient structure.
- 2. Investigate the physical properties of the materials, as received from the supplier, so that we may determine if new materials or functionalization is required to achieve a novel, successful BHJ solar cell structure

Current State-of-the-Art BHJ Solar Cell

Proposed Structure

- Improved UV-vis absorption efficiency due to increased polymer content
- Control over domain size and interface width to improve exciton dissociation efficiency
- Improve carrier transport by creating columnar domains – shorter path: less scattering, trapping

• Fillers at Blend interfaces

- Interfaces have unfavorable energy.
- Both phases interact with the filler.
- Both Ea, Eb have to be less than Eab
- Key to the use of nanofillers: Fillers will migrate to the interface and lower the energy of the system
 - Fillers must migrate to the interface between the two polymers
 - Fillers must provide mechanical reinforcement across the interface
 - Low concentrations of fillers should provide desired effect

A type

Equilibrium morphology can be determined by by balancing the reduction in interfacial energy with the increase in bending energy: γ : the interfacial energy between the two polymers,

$$F = \gamma (n-m)l^2 + \gamma' ml^2 + mF_{bending}$$

Energy penalty of putting C type platelets in either of the phases

Interfacial energy of the platelet covered domains

Bending energy of the platelets due to interfacial curvature.

 γ ': is the interfacial energy when platelets are at the interface,

n: the total number of clay platelets of C

m: the number of clay platelets of C, contributing interfacial energy reduction

P: the surface area of the platelets

r: the radius of domains

Compatibilization Theory

Assumption: all the domains are fully covered by the clay platelets and the blend has equal amount of each phase, we can derive an expression for *m*:

$$F_{bending} = \frac{Eh \zeta^4}{4l^2} \qquad (\zeta \approx P/r) \qquad m = 3V / 2rl^2$$

E :Young's modulus, *h*: thickness of a platelet, ζ : displacement of the platelet for small deformations, V: system volume Minimize free energy with respect to *r*, dF/dr = 0 $r = \alpha l$ $\alpha = \left(\frac{5Eh}{4(\nu - \nu')}\right)^{1/4}$

Let $\gamma = 2mN/m$, $E \sim 1GPa$, $\gamma >> \gamma'$, then $\alpha \sim I$, the domain size is the magnitude of clay platelet size, which is similar to the diameter of the domains: 400-600 nm (TEM)

Larger γ , smaller *r*, more efficient compatibilizing.

Nanoparticles in Blends

δ was introduced to enhance repulsive interactions between the monomers. When δ<1, repulsion increases, leading to phase separation.

$$V(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \delta \left(\frac{\sigma}{r}\right)^{6} \right]$$

- The simulation box was held at $2L_x=2L_y=L_z=32\sigma$.
- The temperature of the simulations was held constant at 1.1 ($T_q \approx 0.5$).
- The temperature of the system was dissipated by the two walls.
- Before shear, the system was equilibrated to avoid any residual stresses.
- Attractive force between polymer and filler was fixed with ε_{fp}=2.0 for both A and B polymers (N=64).

• δ was introduced to enhance repulsive interactions between the monomers. When $\delta < 1$, repulsion increases, leading to phase separation. $V(r) = 4\varepsilon \left(\frac{\sigma}{r}\right)^{12} - \delta \left(\frac{\sigma}{r}\right)^{6}$

- The simulation box was held at $2L_x=2L_y=L_z=32\sigma$.
- The temperature of the simulations was held constant at 1.1 ($T_q \approx 0.5$).
- The temperature of the system was dissipated by the two walls.
- Before shear, the system was equilibrated to avoid any residual stresses.
- Attractive force between polymer and filler was fixed with ε_{fp}=2.0 for both A and B polymers (N=64).

- We manipulated the system by controlling values of:
 - filler size s
 - filler concentration ϕ_f
 - interaction parameter $-\delta$
 - wall velocity v

S	φ _f	V	δ
0.25	0.02	0.12	0.10
1.00	0.05	0.24	0.25
		0.48	0.50
			0.75

- We manipulated the system by controlling values of:
 - filler size s
 - filler concentration ϕ_f
 - interaction parameter $-\delta$
 - wall velocity v

S	φ _f	V	δ
0.25	0.02	0.12	0.10
1.00	0.05	0.24	0.25
		0.48	0.50
			0.75

Equilibrium profiles

 Nanoparticle segregation increases with increase in repulsion between phases

Creating polymer blends

By adjusting the δ term, we were able to force varying degrees of phase separation.

Non planar interfaces

• Fillers can also segregate even if the interface is not planar -- solar cell

E-Beam Lithography

E-Beam Direct

- •. One wafer throughput
- Slow: Up to 150 hours to process.
- Ideal for complex patterns
- Research vs commercial applications

Sample Preparing

Spin Casting

Polymer self assembly

Richard Register, Nature 2004

Materials and Methods

PCBM

American Dye Source

P3HT (R=C₆H₁₃), **32** kD

American Dye Source

PS, 65 kD

Pressure Chemical

Solution preparation:

Thin film preparation:

Thin film analysis:

1 – 8 wt% polymer and PCBM in chlorobenzene with varying ratio by wt% depending on experiment

Spin casting method on hydrophilic and hydrophobic Si, copper TEM grids, glass slides

AFM, TEM

14:1 PS:P3HT Surface Morphology via AFM

μm

14:1:1 PS:P3HT:PCBM Lateral Force AFM

Polymer-polymer interfacial tension from AFM contact angle measurement

Solid-liquid interface:

 $\gamma_{\rm PS/P3HT} = \gamma_{\rm PS} - \gamma_{\rm P3HT} \cos \theta$

 $\gamma_{PS} = 40.6 \text{ dyn/cm}$ $\gamma_{P3HT} = 36 \text{ dyn/cm}$ $\gamma_{PCBM} = 50.2 \text{ dyn/cm}$

Surface distance	59.090 nm
Horiz distance(L)	59.052 nm
Vert distance	2.063 nm
Angle	2.001 °

Interfacial energies fromContact angle goniometry

$$\gamma_{A} - (\gamma_{A/B} + \gamma_{B} \cos\theta_{A}) = 0;$$

 $V_{A} = 40.2 \text{ dyn/cm} \quad \theta_{A} = 3.533$

 $\gamma_B=36.0 \text{ dyn/cm}$

 $\gamma_{A} - (\gamma_{A/B} + \gamma_{B} \cos \theta_{A}) = 0$

Sample Description	Without PCBM			With PCBM				
	Contact Angle (θ)	Interfacial Tension y _{AB} (dyn/cm)	Domain Length (nm)	Thickness (nm)	Contact Angle (θ)	Interfacial Tension γ _{AB} (dyn/cm)	Domain Length (nm)	Thickness (nm)
62 K M _w PS: P3HT	3.89 ± 0.775	4.283	246 ± 8.9	84.4 ± 6.87	2.72 ± 1.062	4.241	260 ± 29.0	75.7 ± 2.84
123 K M _w PS: P3HT	7.49 ± 1.498	4.507	295 ± 16.8	96.8 ± 8.00	2.86 ± 0.352	4.245	295 ± 55.4	97.8 ± 4.79

Neutron Reflectometer*

*Thanks Dr. Sushil Satija, Dr. Bulent Akgun from NIST Center for Neutron Research these two schemes come from NCNR's website <u>http://www.ncnr.nist.gov/instruments/ng7refl/instrumentfeatures.html</u> and <u>http://www.ncnr.nist.gov/programs/reflect/NR_article/index.html</u>

Helfand-Tagami theory

$$\sigma = \left[\frac{a^2}{3\pi\chi} + \frac{1}{4\pi a\rho}\sqrt{\frac{6}{\chi}}\ln\left(\frac{q_{\text{max}}^2}{q_{coh}^2 + q_{\text{min}}^2}\right)\right]^{1/2}$$

$$a \approx 6.7 \text{\AA}$$

Interfacial tension between polymers at equilibrium point is 83 Å Flory-Huggins interaction parameter between the two polymers:

$$\chi \approx 6.92 \times 10^{-4} \qquad (\gamma_{INT} = \left(\frac{kT}{a^2}\right) \sqrt{\frac{\chi}{6}})$$

PCBM Effect on PS:P3HT Interfacial Tension

Sample	Annealed	РСВМ	Substrate	Contact Angle	Ŷрѕ/рзнт
14:1 PS:P3HT	72 hr	No	hydrophilic	1.32	<u>4.61</u>
14:1 PS:P3HT	72 hr	No	hydrophobic	1.508	<u>4.612</u>
14:1 PS:P3HT	0 hr	No	Hydrophilic	1.251	4.609
14:1 PS:P3HT	0 hr	No	Hydrophobic	1.1952	4.608
14:1:1 PS:P3HT:PCBM	0 hr	Yes	Hydrophilic	1.441	4.610
14:1:1 PS:P3HT:PCBM	0 hr	Yes	Hydrophobic	1.156	4.607
14:1:1 PS:P3HT:PCBM	72 hr	Yes	Hydrophilic	0.936	<u>4.605</u>
14:1:1 PS:P3HT:PCBM	72 hr	Yes	hydrophobic	0.848	<u>4.604</u>

PCBM nanoparticle distribution in P3HT

80 kV electron beam energy

1:1 PCBM:P3HT by weight at 1 wt% in chlorobenzene

Spin cast at 2500 RPM onto glass

Floated from water surface onto copper TEM grids

PCBM distribution in PS:P3HT

Scale bar = 100 nm

Scale bar = 500 nm

1 wt% 1:1:0.2 PS:P3HT:PCBM in chlorobenzene, spin cast at 2500 RPM onto glass, floated from water onto copper TEM grids

Summary

- 1. A solar cell structure based on nanoparticle confinement in polymer blend thin films was proposed
- 2. PCBM nanoparticles did not prefer either polymer phase
- The particles reduced the interfacial tension between the two polymers – we conclude that they are drawn to the interface.
- 4. PCBM was confined to the polymer-polymer interface in a PS:P3HT blend film to form a conductive pathway

Fabricate the Device and Test it!