Imperial College London

Past and Prospective UK Energy Transitions Prof. Peter Pearson Centre for Energy Policy & Technology (ICEPT) p.j.pearson@imperial.ac.uk

Advanced Energy 2009

The Hyatt Regency Long Island, NY Session III, Track E: Low Carbon Society 19 Nov. 2009

Imperial College London

Perspective on Energy System Transitions

- Energy systems are complex evolutionary entities
- Transitions mean interactions between
 - Fuels & energy converting technologies
 - Infrastructures (transport networks, pipes & wires...)
 - Institutions (markets, companies, finance...)
 - Policy regimes (institutions, bureaux, regulations...)
 - Economic variables (prices, income/output...)
 - Environment & resources
 - And people…

Page 2

- Can we learn from past transitions & policies?
 - The British Industrial Revolution
 - Prospective Pathways for the UK Electricity Sytem

© Imperial College London

Energy & Britain's 1st 'Industrial Revolution': C16th-19th Energy Transitions

- From a traditional agricultural economy, with limited
 - Productivity of scarce land & flows of energy
 - For food, clothing, housing & fuel
- To a new regime: growth &welfare transformed by

 Using fossil fuel stock (coal) for larger energy flows
- With innovations including
 - Steam engine
 - Cotton mills
 - Substitution of coal for wood in metal manufacture
 - Other social, political, institutional & technological changes

Fig. 1: UK Final Energy Consumption, 1500-1800 (TWh)

Fig. 2: UK Final Energy Consumption, 1800-2000 (TWh)

Fouquet & Pearson (2003) *World Economics*, 4(3)

 British Industrial Revolution: wages high, capital & energy cheap relative to other countries in Europe & Asia

 Steam engine, cotton mill & substitution of coal for wood in metal manufacturing uniquely profitable in Britain (Allen, 2009)
 Age 4
 Descent (2003) World Economics 4(3)

Fig. 3: prices matter

Inverse relationship between:

UK energy intensity (E/GDP)

and

Page 5

Real energy prices-(p/kWh)

Fig. 4. UK Energy Service Transitions: Lighting – use of Candles, Gas, Kerosene & Electricity (1700-2000)

icept

Fouquet & Pearson (2006) Energy Journal, Vol. Sections H.2 and E.5 LOHUOHBillion: 10

Other Energy Services

Fig. 5. Efficiency of UK energy technologies, 1500-2000 (index: 1900=100)

Fouquet & Pearson (2007), IAEE conference, Wellington

Fig. 7. Energy services consumed, 1500-2000

ee also Fouquet (2008), Heat, Power and Light, E. Elgar

Fig. 6. Cost of consumer energy services, 1500-2000

icept

Some Lessons from UK Energy Transitions

- Transitions have profound effects on economy & welfare
 - But takes time for new fuels, technologies, infrastructures & institutions to develop & measurable benefits to come through
- There can be much inertia in UK systems
 - Path dependence? First mover advantage?
 - UK mining & textile industries 1st with steam but slow with electricity in 2nd Industrial Revolution
 - Relative to chemicals & engineering, shipbuilding & vehicles
- Modern transitions can be **faster** but still takes time
 - To build new enthusiasm, infrastructure & institutions
 - Overcome 'lock-in', turn over old capital stock
- Evidence shows government can make a difference
- Now time for a 3rd, low-carbon 'Industrial Revolution'?
 Page 8 © Imperial College London

Transition Pathways to a Low Carbon Economy

Research challenges

- Design/evaluate to UK low carbon electricity transition pathways
- Explore dynamics of past & prospective transitions
- Analyse changing roles & influences of large & small 'actors'/stakeholders, & associated governance patterns

Key aims

- Develop/explore/analyse 3 prospective transition pathways ('Market rules', 'Central Control
- Integrated assessments:
 - Technical & economic feasibility
 - Social & environmental potential & acceptability

Inform thinking & policy towards a low carbon system
 Page 10
 © Imperial College London

Transition Pathways: from the old to the new

regime

Figure 1: Possible Transition Pathways and the Factors that Influence them (Source: Transition pathways project team)

Builds on the work of Dutch researchers on transitions & transition management (using a multi-level framework of *niches*, *socio-technical regimes* and *landscape*)
Draws on other parts of the innovation systems literature
And other social & engineering disciplines e London

Transition Pathways: The Electricity Regime Action Space - Shifting Patterns of Governance?

icept

Page 12 © Imperial College London Source: Low Carbon Pathway Project: Jacquie Burgess & Tom Hargreaves

Transition Pathways Research Stages

- 1: Develop Frameworks & Outline Pathways ('08-'09)
- 2: Explore & Interrogate Transition Pathways ('09-'10)
- 3: Complete Pathway Exploration: Produce, Test & Deliver Findings ('10-'11)

Page 13 © Imperial College London

Sources

Publications from the Low Carbon Pathways Project are available from http://www.lowcarbonpathways.org.uk/lowcarbon/publications/

And include

Foxon, T J, Hammond, G P, Pearson, P J, Burgess, J and Hargreaves, T (2009), 'Transition pathways for a UK low carbon energy system: exploring different governance patterns', paper for 1st European Conference on Sustainability Transitions: "Dynamics and Governance of Transitions to Sustainability", Amsterdam, Netherlands, 4-5 June 2009

Other Sources

- Allen, R (2009), *The British Industrial Revolution in Global Perspective*, Cambridge University Press
- Fouquet, R (2008) *Heat, Power and Light: Revolutions in Energy Services*, Edward Elgar
- Fouquet, R and Pearson, PJG (1998). 'A Thousand Years of Energy Use in the United Kingdom', *The Energy Journal*, 19(4)
- Pearson, P J G and Fouquet, R (2003), 'Long Run Carbon Dioxide Emissions and Environmental Kuznets Curves: different pathways to development?', Ch. 10 in Hunt, L C (ed.)_*Energy in a Competitive Market*, Edward Elgar, Cheltenham.
- Fouquet, R and Pearson, P J G (2003). 'Five Centuries of Energy Prices', *World Economics*, 4(3): 93-119.
- Fouquet, R and Pearson, P J G (2006): 'Seven Centuries of Energy Services: The Price and Use of Light in the United Kingdom (1300-2000)', *The Energy Journal*, 27(1)
- Fouquet, R and. Pearson, P JG(2007) 'Revolutions in Energy Services, 1300-2000', 30th Conference of International Association for Energy Economics (IAEE), Wellington, New Zealand, 18-21 February

Foxon, T J, Pearson, P J G(2007)'Towards improved policy processes for promoting innovation in renewable electricity technologies in the UK', *Energy Policy* (35),1539 Page-11550. © Imperial College London