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A Smartgrid will transform the generation and distribution of energy
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Demand Shaping and Shaving (Demand Response)
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Evolution of energy demand management

Planned (dayPlanned (day--
ahead) DRahead) DR

Dynamic Dynamic 
PricingPricing

Spinning Spinning 
ReserveReserve

Emergency Emergency 
(day(day--of) DRof) DR

• Manual trigger

• Manual action

• Pre-defined window

• Pre-defined response

• Automated trigger

• Automated action

• Uncertain window

• Uncertain response

Implications
• Buildings: need automated decision support and management
• Utilities: need prediction of demand response as function of signal

Implications
• Buildings: need automated decision support and management
• Utilities: need prediction of demand response as function of signal
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Energy demand management from building perspective

� Capital decisions
– Energy efficiency upgrades and renovations
– Demand shifting options: battery, fuel cell, stored cooling

– Co-generation

� Energy procurement decisions
– Energy block futures

– DR programs: future capacity market, next-day demand market

� Operational decisions
– Load forecasting and monitoring

– Load scheduling (stored cooling, pre-cooling, water pump, PEV charging)

– Load shifting (spinning reserve enablement, RTU coordination)
– Load shedding (preference-based thermostat and dimmer control)

These inter-related decisions would benefit from a common demand modelThese inter-related decisions would benefit from a common demand model
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Urban System Modeler

� Modeling framework and simulation engine for modeling 
emergent demand and resource usage

� Targeted for an urban setting:
– Heterogeneous individuals drive resource demand

• Behavioral models including price sensitivity, 
social norms, and utility

• Integration point for multi-resource interactions
– Resource infrastructure in an urban setting  

constrains production and delivery
• Capacity planned for efficiency
• Physical models

� Supports analysis at various levels:
– Building level demand management:

• Capacity planning/procurement
• Operational scheduling
• Demand response

– City or region level resource management:
• Long-term supply planning
• Impact of pricing policies
• Interaction between multiple resources
• Short-term resource provisioning decisions
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End-Use Load

Occupant

End-Use Load

Occupant

Building energy demand prediction
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– by occupant, 
– by end-use load

Statistical analysis

Price
Rebate
DR signal
Info

Set points
Schedules

Weather

Energy demand 
response surface
• by time of day
• signal type & value
• external factors

Behavior elicitation
• software platform
• multi-tenant

Scheduling usage
• energy use profile
• constraint energy use
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Example of Decision Support Scenario for Energy Management:
Decision maker imposes price premiums based on predicted impact on peak demand

Peak demand 
reduction
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Decision support using building energy response surface

Energy demand 
response surface
• by time of day
• signal type & value
• external factors

Energy Procurement 
Planning

� Select optimal supply of 
energy blocks (size, duration, 
time-of-use)

� Based on stochastic 
optimization over energy 
demand forecast and energy 
market prices (futures and 
spot)

Green Portfolio Planning

� Plan investments in green 
assets over a time-line

� Based on analysis of trends 
in demand, energy price, and 
technology maturity under 
uncertainty

Dynamic Demand 
Management

� Schedule discrete loads 
(water pumping, PHEV 
charging, energy storage 
charge/discharge)

� Generate control signals 
(info, price, caps) for optimal 
demand shaping

Demand forecasting and monitoring:
- Analysis of load models to identify areas of improvement 
- Buildings that are most/least efficient
- Discovery of load increase/decrease events

Behavior elicitation
• software platform
• multi-tenant
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Impact of temperature on energy consumption
- with mean temperature (outside)

� It appears that cooling related energy consumption correlated strongly with temperature
� Is there a correlation with heating? yes

Energy Consumption vs. Temp (mean)
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Computing effective heat capacity for cooling and heating

Temp (Mean) vs Energy Consumption
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� Minimum temp (with heating season data) may be more suitable for modeling heat capacity for heating 
� Maximum temp (with cooling season data) may be more suitable for modeling heat capacity for cooling

Transition Period
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Enthalpy Model

- MAD (Mean Absolute Error): 36.2 MWh
- MAPE (Mean Absolute Percentage Error): 2.50%

Forecast with effective heat capacity of cooling and effective heat capacity of heating

Energy Consumption Actual vs. Enthapy Model
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Energy management in multi-tenant buildings

� Buildings with central energy infrastructure
– Energy demand separately controlled by each tenant
– Energy payments based on combined consumption of all tenants

� Operator-Tenant Interactions
– How to assign energy costs and DR rebates to condition tenant behavior



© 2009 IBM Corporation

IBM Research

14

Demand Response Elicitation

Building Management System
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Statistical 
Analysis
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Web Services

Experiment Management
• Set price (static or dynamic)
• Set temp, light set points
• Read energy use, set points
• Create portal content

Demand Response Model
• By time-of-day, resident type, contract, price, 

ambient temperature

Supply constraints

�� Light dimmers Light dimmers –– sense and controlsense and control
�� Thermostat Thermostat –– sense and controlsense and control
�� Interface device Interface device –– information display, device control, preference settingsinformation display, device control, preference settings
�� Web Web –– information display, preference settingsinformation display, preference settingsB
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• Enrollment
• Surveys
• Contract Assignment
• Student Management and 

Support

Portal Server

(if web services do not exist)
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• Demand elasticity by 
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Demand Conditioning based on Dynamic Price Controls

� The GridWise Olympic Peninsula 
Project

– 112 households

– Thermostats programmed to response 
to price signals

– Customer can choose between ‘more 
comfort’ and ‘more economy’

– 3 options for pricing contract:

•Fixed price

•Time-of-use (with manually initiated 
critical peak price periods)

•Real-Time pricing (double auction)

Results
� Real-Time Pricing group: 

– Peak decreased 15-17% 
(pre-heating/cooling)

– Overall consumption 4% 
higher than fixed-price group

� Time-of-Use group: 

– -0.17 price elasticity
– Overall consumption 20% 

lower than fixed-price group
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Energy Reservation System (Scheduling usage)

WASHER 1

WASHER 2

WASHER 3

WASHER N-1

WASHER n

:

ENERGY

• Finally at an operational level (daily/weekly) how do we stay within the contracted 
load? (i.e. min spot purchases and control operational budgets)

• smart devices such as washing machines
• given the desired time window (based on price signal) schedule washing 
machines to level the load 

•This requires a higher level of individual commitment 
• Incentive alignment through pricing
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Energy demand management from utility/ISO perspective

� Supply capacity decisions
– Peaker units capacity vs. DR
– Spinning reserve generators vs. DR

� Tariff decisions?

� Operational decisions
– Voltage control?
– Spinning reserve deployment
– DR (or DP) initiation

• Rebate/price level (by consumer or end-use type)
– Selective load shedding (by consumer or end-use type)

These decisions require a predictive model of demand flexibility for a regionThese decisions require a predictive model of demand flexibility for a region
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City energy demand model
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� At the grid level we have a node for each zone

� Each zone has an associated demand (supply)

� At the grid level we need to solve for a collection of models

� New constraints might need to be handled at each level of 

the hierarchy (e.g. capacity constraints on arcs)

Energy Demand Modeling for the Entire Grid
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Unit Commitment Problem (Distributed Generation)

MINIMUM DOWN TIME

24
48 72

DEMAND

CO2 EMISSION

BASE
UNITS

PEAKING 
UNITS

Integer programming problem with uncertain demand & supply
-> Stochastic optimization

The heat rate of a unit is a (nonlinear) function of load -> nonlinear optimization
- maintenance improves heat rate and hence CO2 emissions

SOLAR

WIND
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Solver Engines for Unit Commitment

� The unit commitment problem solves a planning problem for a utility to 
provide a schedule for generators to minimize cost while

– Satisfying demand 
– Satisfying production constraints

� The advanced solvers that we built in our engine has 
– Ability to scale to large number of units and 5-7 day horizon
– Handle uncertainty in demand 
– Handle uncertainty in generation

• Alternate generation such as wind and solar have uncertain yield and 
the solver needs to handle this

• Incorporate new demand sources such as plug-in vehicles
• Model storage as a new source of generation (aka demand response

dispatch)
– Handles nonlinear cost of production 
– Advanced Stochastic optimization techniques


