The Energy-Water Nexus (EWN): a New York City Pilot Study

2009 Advanced Energy Center Conference Vatsal Bhatt, Kenya Crosson*, **William Horak**, Ann Reisman Brookhaven National Laboratory *University of Dayton

a passion for discovery

Energy and Water are ... Interdependent

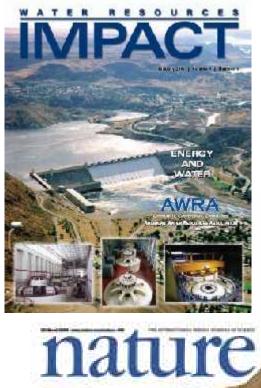
Water for Energy

and

Energy for Water

Energy and power production require water:

- Thermoelectric cooling
- Hydropower
- Energy minerals
 extraction/mining
- Fuel Production (fossil fuels, H₂, biofuels)
- Emission control

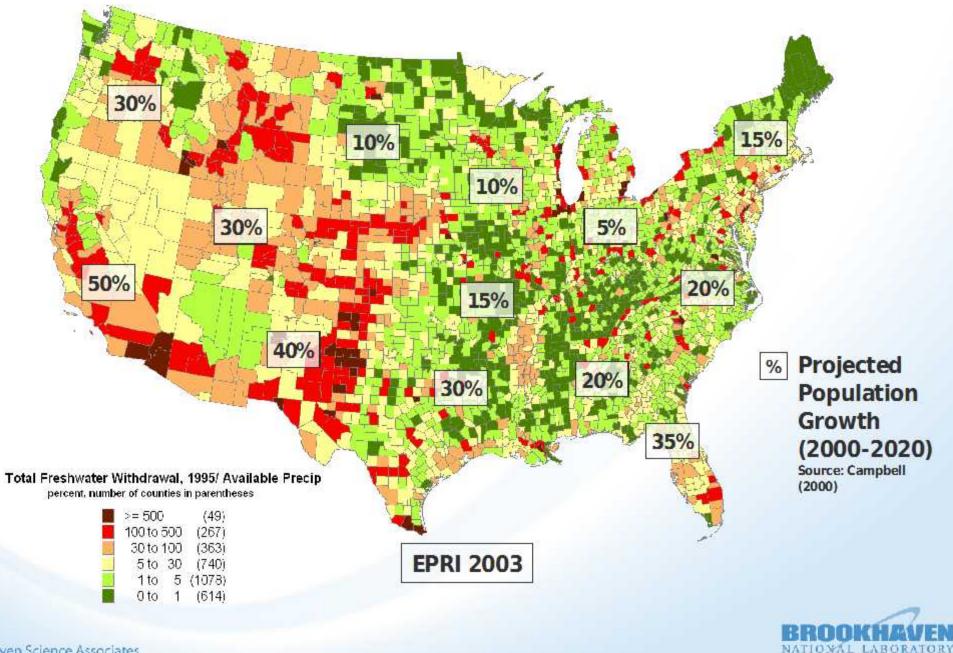

Water production, processing, distribution, and end-use require energy:

- Pumping
- Conveyance and Transport
- Treatment
- Use conditioning
- Surface and Ground water

Emerging Interest in Energy and Water Issues and Challenges

- State and national water and energy groups
 - 24 invited presentations in FY07 and 08 on energy and water challenges
 - Research and regulatory groups considering future energy and water needs
- Increased media interest
 - NATURE, ECONOMIST
 - Technical magazines
- NSF/NRC interest in energy debate and interdependencies research
- Growing international concerns and challenges
 - Europe, Australia, Asia, Canada

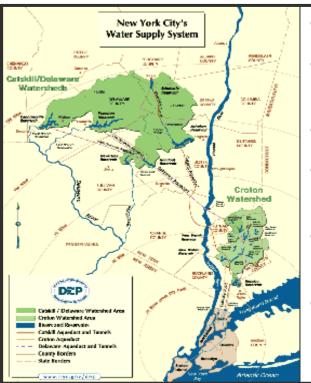
WATER



WATER IMPLICATIONS OF BIOFUELS PRODUCTION IN THE UNITED STATES

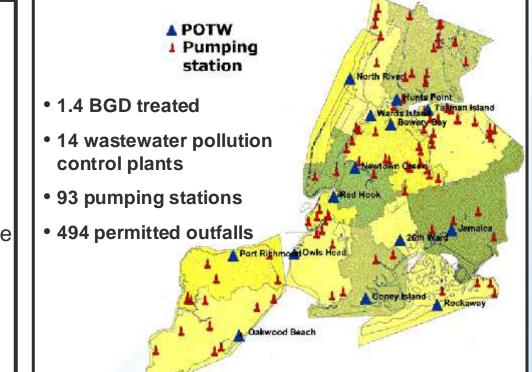
ANTIDAAL LABURATURI

Water challenges are nationwide


New York City Pilot Study

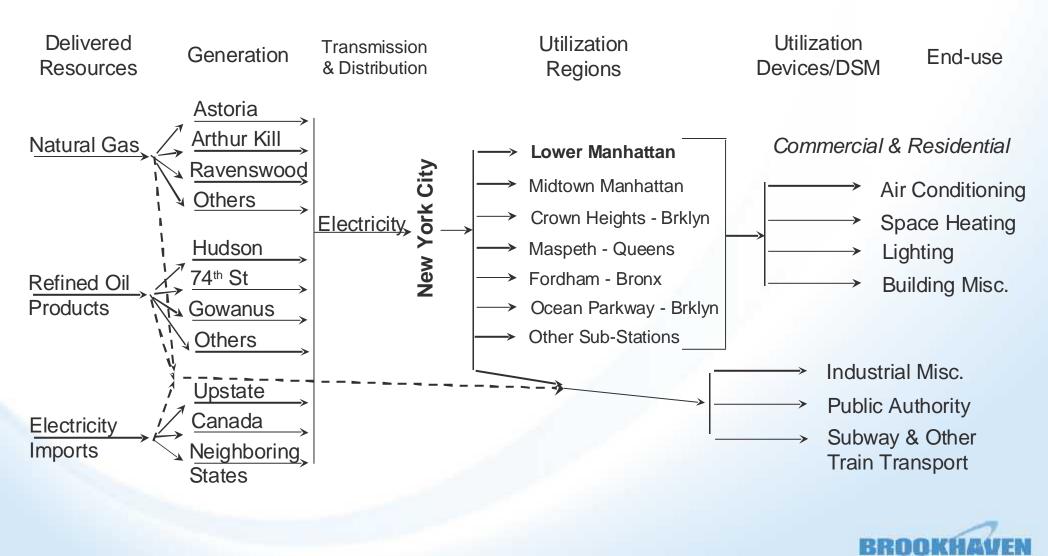
Goals:

- Determine the key energy-water planning issues for an urban area - New York City
- Develop and apply an integrated energy-water decisionsupport tool to facilitate urban energy-water planning
- Identify the activities and framework needed to achieve successful integrated energy-water planning
 - Challenges (regulatory/policy issues, data, necessary tools, programmatic issues, etc.)
 - Suggestions for steering committee establishment and the interactions and activities of the steering committee
 - Development and application of tools and methods

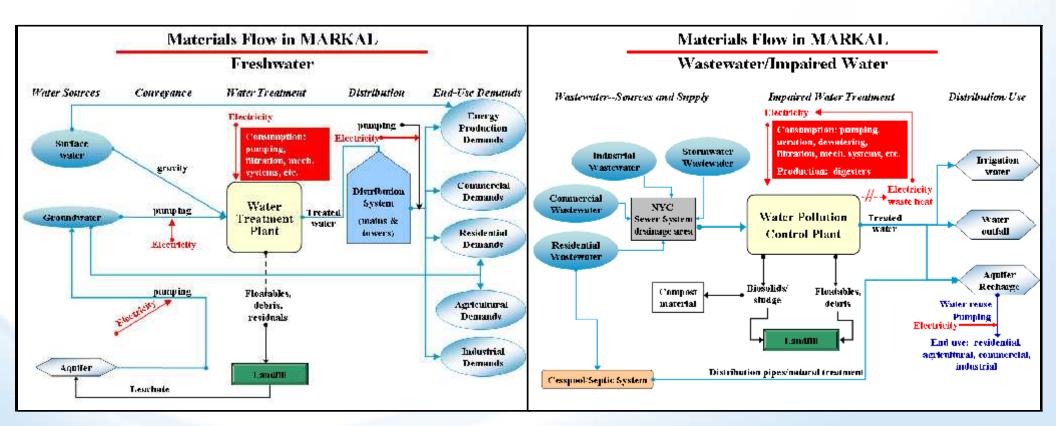


New York City Study Area

- •1.3 BGD supplied
- •19 reservoirs, 3 controlled lakes
- •3 aqueducts
- •2 distribution reservoirs
- •3 rock tunnels in the city (1, 2, 3)


•Network of risers and 6000 miles of distribution mains

<u>Area</u>: 321 mi² (~ 830 km²); <u>Population</u>: 8,213,839 <u>Energy Supply</u>: Keyspan, Reliant Resources, NRG Energy, and NYPA Distribution: Consolidated-Edison *Forecasted peak electricity demand 11,020 MW (80% in-City generation) 2003* By 2008, 3,780 MW of new electricity resources needed



Reference Energy System

Modeling Water Systems

Detailed fresh and wastewater flows and technologies

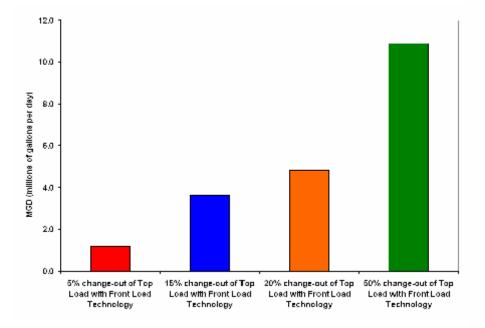
Leading NYC Energy and Water Planning Challenges

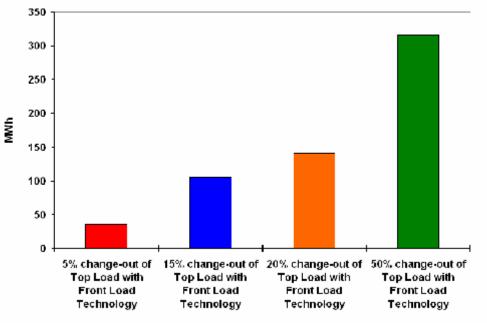
- Identified by the Steering Committee
- Reliable operation of drinking water and wastewater systems increases energy demands (UV treatment and Croton filtration plant)
- Enforcement of water conservation and assessment of the total benefits (e.g., water and energy savings)
- Evaluation of the impacts of climate change on energy and water systems
- Ensuring future energy and water supply security
- Planning for water withdrawals for steam production
- City-wide integrated planning of energy and water systems

Policy Options Analysis

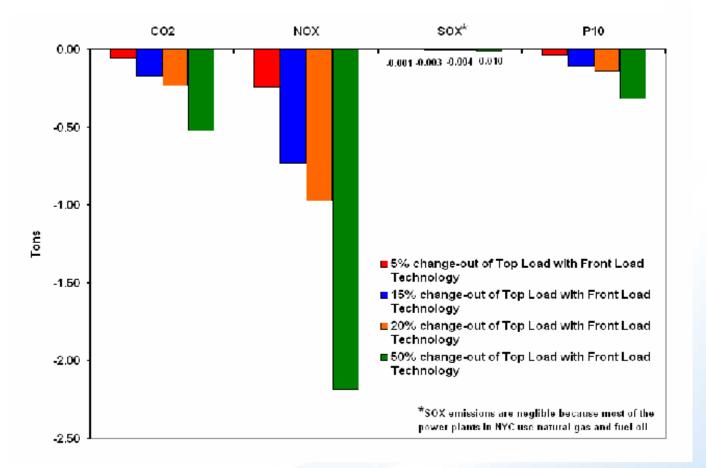
Several energy-water integrated planning scenarios were developed, based on issues identified by the steering committee.

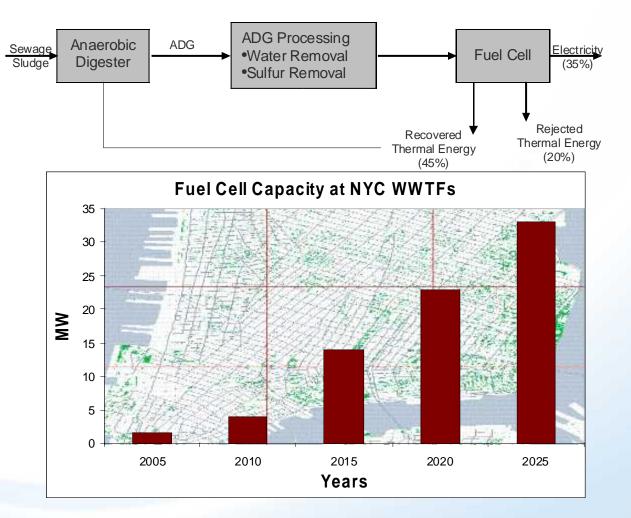
- <u>Scenario 1</u>: Water-Efficient Appliances: Energy and Water Use Impacts
- <u>Scenario 2</u>: WasteWater Treatment: Deploying More Fuel Cells


<u>Scenario 3</u>: New York City Water Supply: Impacts of Increased Energy Demands for New Treatment

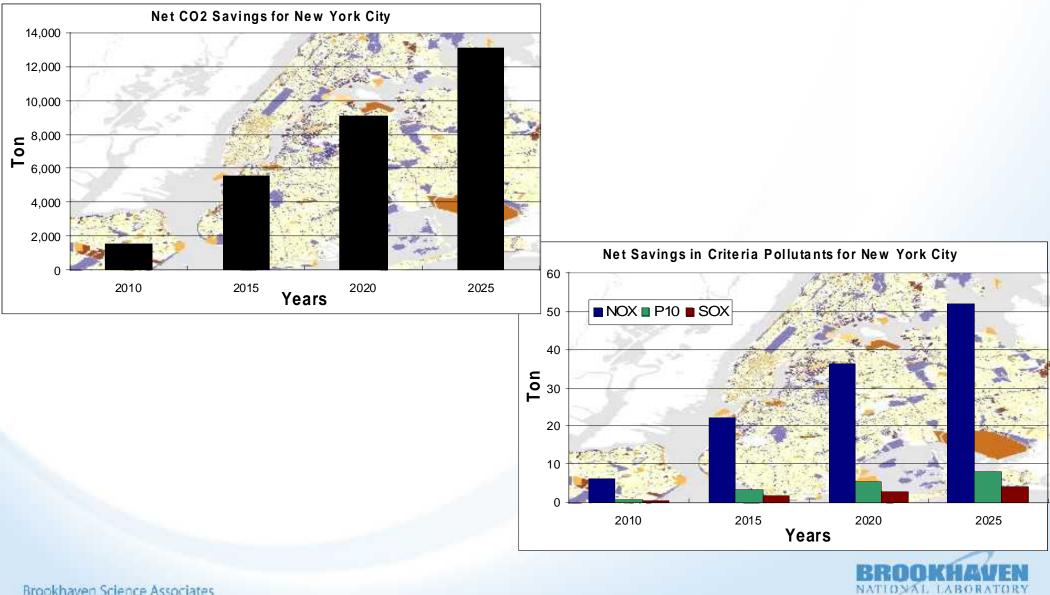

<u>Scenario 4</u>: New York City Steam Generation: Water Supply and Energy Impacts

<u>Scenario 5</u>: Climate Change Models and Research: A Link with Energy and Water


Scenario 1 Water-Efficient Appliances



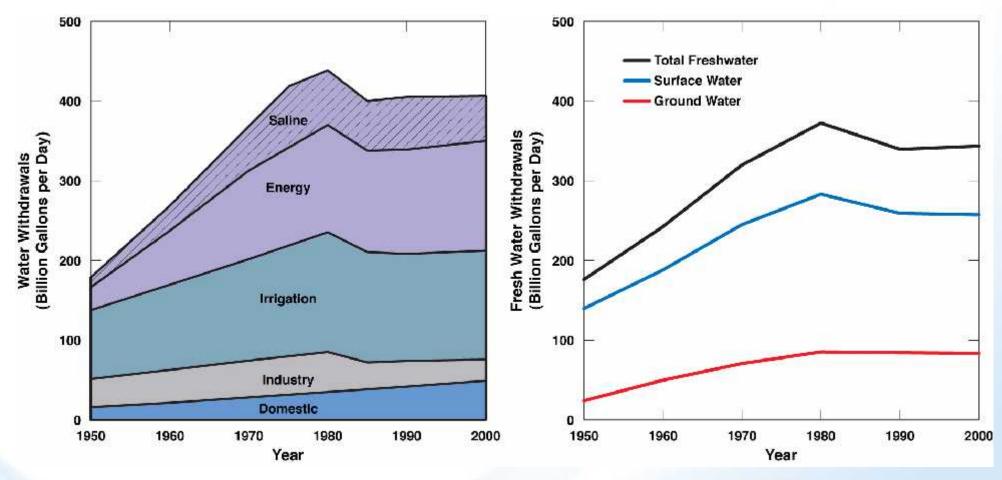
Scenario 1 Water-Efficient Appliances



Scenario 2 Wastewater Treatment: Deploying More Fuel Cells

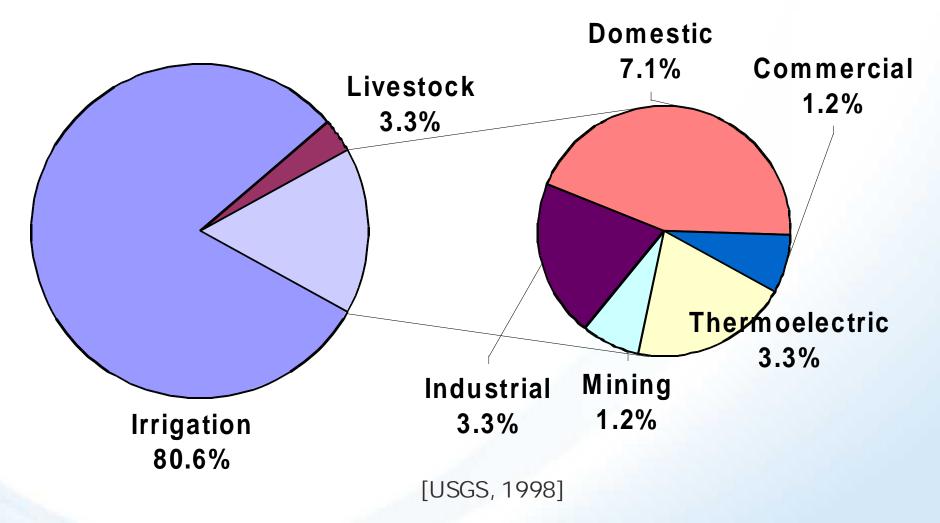
Scenario 2 Fuel Cells

Energy-Water Nexus Summary


- Energy and Water Issues are inter-connected
- Numerous stakeholders
- Data needs are a challenge (GAO, 2009)
- Developing for DOE a 10-region Markal Water Model
- Linkages to Climate Models will be a Challenge

Additional Slides

Water Withdrawal Trends by Sector



[USGS, 2004]

Water Consumption by Sector

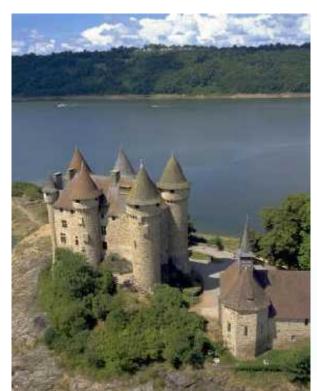
U.S. Freshwater Consumption, 100 Bgal/day

Energy accounts for 27 percent of non-agricultural fresh water consumption

Water Demand/Impact of Transportation Fuels

Fuel Type and Process	Relationship to Water Quantity Water needed to extract and refine; Water produced from extraction	Relationship to Water Quality Produced water generated from extraction; Wastewater generated from processing;	Water Consumption	
			Water consumed per-unit-energy [gal/MMBTU]† 7 – 20	Average gal water consumed per gal fuel ~ 1.5
Conventional Oil & Gas				
- NG extraction/Processing			2-3	~ 1.5
Biofuels - Grain Ethanol Processing - Corn Irrigation for EtOH	Water needed for growing feedstock and for fuel processing;	Wastewater generated from processing; Agricultural irrigation runoff and infiltration contaminated with fertilizer, herbicide, and pesticide compounds	12 - 160 2500 - 31600	~ 4 ~ 980*
- Biodiesel Processing			4-5	~1
- Soy Irrigation for Biodiesel			13800 - 60000	~ 6500*
- Lignocellulosic Ethanol and other synthesized Biomass to Liquid (BTL) fuels	Water for processing; Energy crop impacts on hydrologic flows	Wastewater generated; Water quality benefits of perennial energy crops	24 – 150 ‡§ (ethanol) 14 – 90 ‡§ (diesel)	~ 2 - 6 ‡§ ~ 2 - 6 ‡§
Oll Shale - In situ retort	Water needed to Extract / Refine	Wastewater generated; In-situ impact uncertain; Surface leachate runoff	1 – 9 ‡	~ 2‡
- Ex situ retort			15 - 40 ‡	~ 3‡
Oil Sands	Water needed to Extract / Refine	Wastewater generated; Leachate runoff	20 - 50	4 - 6
Synthetic Fuels - Coal to Liquid (CTL)	Water needed for synthesis and/or steam reforming of	Wastewater generated from coal mining and CTL processing	35 - 70	~ 4.5- 9.0
- Hydrogen RE Electrolysis			20 – 24 ‡	~ 3 ‡
- Hydrogen (NG Reforming)	natural gas (NG)		40 - 50 [‡]	~7‡

Ranges of water use per unit energy largely based on data taken from the Energy-Water Report to Congress (DOE, 2007)


Conservative estimates of water use intensity for irrigated feedstock production based on per-acre crop water demand and fuel yield
 Estimates based on unvalidated projections for commercial processing;
 Assuming rain-fed biomass feedstock production

2003 Heat Wave Impact on French Electric Power Generation

- Loss of 7 to 15% of nuclear generation capacity for 5 weeks
- Loss of 20% of hydro generation capacity
- Large-scale load shedding and shut off transmission to Italy
- Sharp increase of spotmarket prices: 1000 to 1500 \$ / MWh for most critical days

Normal conditions in August

Bort-les-Orgues Réservoir

August 27, 2003

Projected New Electric Power Generation Capacity through 2035

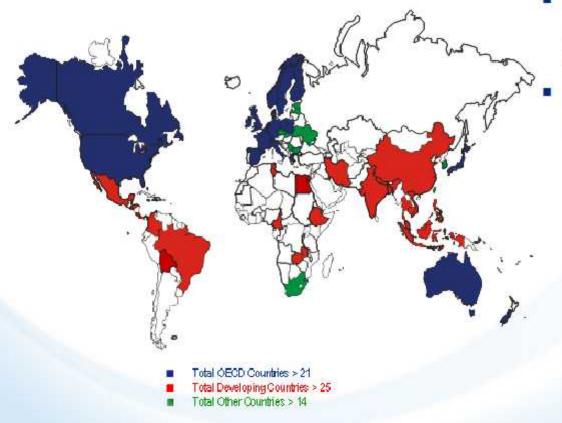
Coal

- 350, 400 MW steam turbine plants (140,000 MW)
- Natural Gas
 - 150, 100 MW natural gas combined cycle (15,000 MW)
- Renewables
 - 125, 200 MW wind or solar farms (25,000 MW)
- Nuclear
 - 5, 1000 MW nuclear reactors (5,000 MW)
- Hydroelectric
 - None (~40,000-60,000 MW available)

Water Use and Consumption for Electric Power Generation

		Water Use Intensity (gal/MWh _e)			
Plant-type	Cooling Process	Steam Condensing		Other Uses	
		Withdrawal	Consumption	Consumption	
	Open-loop	20,000-50,000	~200-300	~30	
Fossil/ biomass steam turbine	Closed-loop	300-600	300-480		
Nuclear steam turbine	Open-loop	25,000-60,000	~400	~30	
	Closed-loop	500-1,100	400-720		
Natural Gas Combined-Cycle	Open-loop	7,500-20,000	100	7–10	
	Closed-loop	230	180		
Integrated Gasification Combined-Cycle	Closed-loop	200	180	150	
Carbon sequestration for fossil energy generation	~25% increase in water withdrawal and consumption				
Geothermal Steam	Closed-loop	2000	1350	50	
Concentrating Solar	Closed-loop	750	740	10	
Wind and Solar Photovoltaic	N/A	0	0	1-2	

New York City Pilot Study Steering Committee Roles


Tasks and Activities

- Identify the energy-water issues for NYC
- Guide the development of the integrated energy-water tool
- <u>Assist</u> and guide BNL researchers in obtaining needed energy-water data and information
- Select key energy-water strategies to be evaluated using the developed decision-support tool
- Review final report
- Comprised of a Diverse Group of Stakeholders
 - Columbia University Professor/NASA GISS Researcher
 - USEPA Region 2 Senior Energy Policy Advisor
 - Consulting Firm (HDR)
 - Water Environment Research Foundation
 - NYC Department of Environmental Protection
 - Energy Company in NYC (Consolidated Edison)

Decision Support Tool: MARKAL

- Developed at BNL in 1970s in collaboration with IEA (International Energy Agency) continuously updated/validated
- Flexible and transparent framework with a well documented methodology

- Over 100 institutions in 55 countries currently use it for energy systems analysis
- Use of MARKAL at U.S. DOE R&D policy decisions
 - Applied R&D Programs (NE, EERE, FE & OE) – GPRA 1993
 - Office of Nuclear Energy GNEP
 - Office of Policy and International Affairs
 - Hydrogen Economy
 - Energy-Water Nexus

MARKAL Model Basics

- Utilizes a state-of-the-art dynamic linear programming framework
- Provides a *technology-rich* basis for estimating energy dynamics *over a multi-period horizon* (2005-2050)
- Models *environmental, technological* and *policy* restrictions
- Generates *least-cost* energy path based on *perfect* foresight and *life-cycle costs* of technologies and competing alternatives (cradle-to-grave)
- Identifies the most cost-effective pattern of resource use and technology deployment over time

