The Role of the Utility in Advanced Energy Technology Development

Advanced Energy Research & Technology Conference - November 2009

Christopher A. Cavanagh National Grid US Ian M. Welch National Grid UK nationalgrid The power of action:

A 50:50 Company

50:50

Distribution

Electricity

Gas

US

National Grid: An international electricity and gas company

National Grid Electricity and Gas Service Areas - US

 Northeast US
? Distributes electricity to 3.3 million customers

> ? Services 1.1 million customers of Long Island Power Authority (LIPA)

? Provides natural gas to3.5 million customers

? Currently owns over 4,000MW of generation

? Blue – Electric

? Purple – Gas

? Orange – Gas & Electric

• Based on customer numbers; includes the servicing of LIPA's 1.1 million customers

National Grid: An international electricity and gas company

Operates the UK gas distribution system; distributes gas on behalf of shippers and suppliers to 11 million consumers. Owns the high-voltage electricity transmission system in England and Wales and operates the system across Britain. Also owns and operates the high pressure gas transmission system in Britain.

US & UK Common Drivers

- ? Climate Change Policy
 - ? UK
 - ? European Union member countries set binding targets for 2020, 2030 and 2050 based on Kyoto summit.
 - ? US
 - ? State Targets (e.g. NY 80% by 2050*)
 - ? Regional Greenhouse Gas Initiative (northeast power generators)
 - ? Proposed Low Carbon Fuel Standard (fuel carbon intensity standard)
 - ? Transportation
 - ? Heating
- ? Customer Value
 - ? Operational Cost Reduction
 - ? Reliability
 - ? Competition

US Example of a Utility Technology Success Compressed Natural Gas Transit Buses

- ? NY Gas Utilities Directly Supported with NYSERDA
 - Development of the Natural Gas Cummins L10 engine
 - Emissions Testing
 - Fueling Systems
 - Composite Tanks
 - 3,600 psig
 - Temperature Compensated Fill
 - Safety Analysis
 - Roadways Tunnels
 - Repair Garages
 - Storage Garages
- ? Result
 - 18.5% of US Transit Buses are Natural Gas Powered in 2008

nrit

nationalgrid The power of action

UK Example of a Utility Technology Success Smart Asset Management

- ? Development of Smart Asset Management tools to aid investment decisions, improve network reliability
 - Common framework for Condition Monitoring applications
 - Integration of monitoring with business process & decision making
 - Improved visualisation and alert capability
 - A system popular with both field & office staff and enables ownership of asset risk issues

nationalgrid The power of action?

UK Technology success -Decisions based on Condition and Criticality

Now have tools to consider both condition and criticality, ie Asset Replacement Priority. Can remove a greater "quantum of risk" for, say, each 5 units replaced

The power of action

Future UK Gas Initiatives – CO₂ networks

Future UK Electricity Initiatives

- ? Proposed 2020 Network
- ? HVDC links
- ? Thyristor Series Compensation
 - ? Multiple Quad Boosters
 - ? High boundary transfers
 - ? Complex fault management

The scale of the storage challenge

Energy Storage – Pumped Hydro = 1800MW x 6 hours

New Products & Services Will Help Drive Our Future Success

- Enhanced and Expanded Energy Efficiency Offerings
- Small/Medium Customer Renewable Energy
 - Solar & Wind
 - Bio-fuel development
- Energy Diversity
 - Reliability
 - Cost
 - Carbon

- Community Green Enterprise
- Transportation Solutions or Alternatives
 - Vehicle Energy Systems
 - Fueling Infrastructure
 - System Impacts

Example of Current US Technology Initiatives Energy Efficiency

- ? Gas Efficiency **qti**
 - Commercial Kitchens
 - New radiant burner for commercial wok
 - Gas low-oil volume fryer; controls formation of alkaline contaminant materials in fryer oil.
 - Gas Rooftop Heating (93%)
 - Exhaust Condensate Acidity & Freezing
 - Fan Power Management
 - Super Boiler
 - 94% Commercial Steam Boiler
 - Transport of Exhaust Moisture through a Membrane

copiers

- ? Electric Efficiency
 - High Performance Buildings
 - Advanced Buildings
 - Data Center Efficiency
 - LED Public Lighting

Frymaster Protector® Low Oil Volume Fryer

CEE

Sub-structure of exterior wall Vapor dispersion/moisture barrier Rigid insulation/weep cavity Exterior cladding Sun control

> Image courtesy of The Weidt Group American Lung Association of Minnesota

Example of Current US Technology Initiatives: Transportation Concepts

- **Transportation Development Goals**
 - 40% of Greenhouse gases comes from transportation
 - Dramatically reduced criteria pollutants ($NO_x CO \& PM$)
 - Need Fuel Cost Advantage
 - ? Uncompressed CNG in NH \$0.67/GGE (October 2009)
 - \$0.05 / kWh ~ \$0.68 per gal eq but \$0.19 / kWh ~ \$2.57 per gal eq
 - Utility Infrastructure Management? Smart Grid
- **Natural Gas**
 - Ultra Low Emission Heavy Duty NG Engine (12 liter)

Cell

- Stoichiometric combustion, cooled EGR, and simple, passive, 3-way catalyst
- Hydrogen & Blends Fuel
- Hybrid lydraul
- Electricitybrid
 - **Battery Electric Vehicles**
 - Changing Demonstration (Level 1, 2 & 3)

HCN

nationalgrid

The power of action?

Potential US & UK Technology Collaboration

- ? Gas Turbo-expander
- ? Pre-combustion sequestration
- ? SMART Grid
- ? Energy Storage
 - ? Battery
 - ? Flywheel
- ? micro CHP
 - ? Stirling Engine
 - ? Solid Oxide Fuel Cell

Plug-in Hybrid Vehicles – Plug-in hybrid vehicles can store energy in their batterias. When connected to the distribution gndt plug-in hybrid vehicles can serve as an additional source of energy, providing power back to the grid during times of peak demand.

Renewables - Renewable energy sources, such as wind turbinos and solar panels, are more readily integrated into the emort distribution grid compared to a traditional power grid.

Smart House – A Smart House tracks usage information through smart motors installed in the home. Customers will have a variety of options through which they can interface with to fearn about the most cost-efficient energy usage patterns. Increased information empowers consumers to reduce their energy usa.

 Sensors – Advanced communication equipment on the grid, including sensors, enable utilities to monitor, identify and quickly correct problems. Increased reliability of power is the result.

Over time, traditional generation assets such as cool-find generation plants will be offset by renewable energy sources in providing energy to

the distribution orid.

Traditional Generation

National Grid Smart Grid Pilot Proposal

With your help we can lead the way in creating the climate for change

Question & Answer

