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Abstract The turnover of callose (β-1,3-glucan) within
cell walls is an essential process affecting many develop-
mental, physiological and stress related processes in plants.
The deposition and degradation of callose at the neck
region of plasmodesmata (Pd) is one of the cellular control
mechanisms regulating Pd permeability during both abiotic
and biotic stresses. Callose accumulation at Pd is controlled
by callose synthases (CalS; EC 2.4.1.34), endogenous
enzymes mediating callose synthesis, and by β-1,3-
glucanases (BG; EC 3.2.1.39), hydrolytic enzymes which
specifically degrade callose. Transcriptional and post-
translational regulation of some CalSs and BGs are
strongly controlled by stress signaling, such as that
resulting from pathogen invasion. We review the role of
Pd-associated callose in the regulation of intercellular
communication during developmental, physiological, and
stress response processes. Special emphasis is placed on
the involvement of Pd-callose in viral pathogenicity.
Callose accumulation at Pd restricts virus movement in
both compatible and incompatible interactions, while its
degradation promotes pathogen spread. Hence, studies on
mechanisms of callose turnover at Pd during viral cell-to-
cell spread are of importance for our understanding of

host mechanisms exploited by viruses in order to
successfully spread within the infected plant.
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Abbreviations
BG β-1,3-glucanase; β-1,3-glucan hydrolase
CalS Callose synthase
ER Endoplasmic reticulum
GSL Glucan synthase-like
MP Movement protein
Pd Plasmodesmata
PR Pathogenesis related
SAR Systemic acquired resistance
SEL Size exclusion limit

Introduction

Plasmodesmata (Pd) are trans-wall membranous channels
that interconnect the cytoplasm, plasma membrane and
endoplasmic reticulum (ER) of contiguous plant cells. Cell-
to-cell transport via Pd is involved in such diverse
processes as plant development, spread of RNA silencing,
and host reactions to pathogen infection. Although the
regulation of Pd permeability to different macromolecules
involved in these processes is presumed to be essential, our
understanding of the controlling mechanisms is rudimenta-
ry. One of the factors involved in regulating Pd permeabil-
ity is callose, a β-1,3-linked homopolymer of glucose that
contains some β-1,6-branches. In this article, we review
current knowledge about callose regulation mechanisms.
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We also discuss in detail about the regulation of callose
accumulation by both endogenous and pathogen-derived
factors which are involved in regulating viral movement.

Callose as a regulator of Pd permeability

Callose is known to be involved in various biological
processes in plants (reviewed by Chen and Kim 2009;
Kauss 1996; Ostergaard et al. 2002; Verma and Hong
2001). For example, callose is temporarily deposited at
cell plates during cytokinesis and then is hydrolyzed as the
new wall matures (Hong et al. 2001a,b; Samuels et al.
1995; Thiele et al. 2009); is involved in pollen develop-
ment (Stone and Clarke 1992); and its temporal accumu-
lation at Pd promotes cotton fiber elongation (Ruan et al.
2004). Besides these developmental processes, callose
deposition is induced by various abiotic and biotic
stresses, including metal exposure (Sivaguru et al. 2000;
Ueki and Citovsky 2002), pathogen attack (Hofmann et al.
2010; Jacobs et al. 2003; Nishimura et al. 2003), and
wounding (Jacobs et al. 2003).

In addition, the reversible accumulation of callose at the
neck region of Pd (Northcote et al. 1989) is involved in
regulating Pd permeability to macromolecules. It is one of
the few host factors clearly demonstrated to control Pd-
mediated cell-to-cell transport. Callose accumulation at Pd
restricts the channel aperture to inhibit cell-to-cell transport
of macromolecules, whereas down-regulation of callose
accumulation relaxes it to allow more macromolecular
trafficking (Beffa and Meins 1996; Beffa et al. 1996; Botha
and Cross 2000; Bucher et al. 2001; Epel 2009; Iglesias and
Meins 2000; Northcote et al. 1989). The level of callose
accumulation is primarily controlled by a balance between
activities of callose synthase (CalS) and β-1,3-glucanase
(BG) that degrades callose (Kauss 1985; Levy et al. 2007b).
Also, a recently identified Pd associated callose binding
protein (PDCB, see below) may participate in regulating the
accumulation level of this polysaccharide, possibly by
stabilizing it (Simpson et al. 2009). These factors together
participate in regulation of Pd-callose levels and thus Pd
permeability.

In Arabidopsis (Arabidopsis thaliana), 12 genes were
identified as callose synthases, designated as GLUCAN
SYNTHASE-LIKE (AtGSL1 to AtGSL12), or as CALLOSE
SYNTHASE (AtCalS1 to AtCalS12) according to other
nomenclature (see Table 1 for correlation) (reviewed by
Chen and Kim 2009; Verma and Hong 2001). In this
review, we use “CalS” for callose synthase in general, and
“GSL” for specific Arabidopsis callose synthases. The
expression of AtGSLs is differentially regulated by both
developmental and physiological signals (Chen and Kim
2009; Dong et al. 2005, 2008; Hong et al. 2001a,b). CalSs

are large proteins (1,770–1,950 amino acids in Arabidopsis),
located in the plasma membrane; they possess many
transmembrane helices and large cytoplasmic region
(Brownfield et al. 2009). CalSs exhibit high substrate
specificity for nucleotide sugar uridine diphosphate
glucose (UDP-glucose). However, studies to date failed
to assign a catalytic center containing the consensus
UDP-glucose binding site in CalS peptides (Brownfield
et al. 2009). It was suggested that some of these enzymes
function as part of a multiple subunit complex consisting
of other polypeptides that do not possess catalytic
domains (Verma and Hong 2001). Among the 12
AtGSLs, some appeared to be involved in non-Pd related
processes: for example, AtGSL1, AtGSL2, AtGSL5,
AtGSL8, and AtGSL10 are demonstrated to be involved
in callose synthesis essential for pollen development,
fertility, and/or viability (Dong et al. 2005; Enns et al.
2005; Huang et al. 2009; Nishikawa et al. 2005; Toller et
al. 2008). AtGSL8 is also involved in callose formation at
cell plate during both shoot apical and root meristem
development (Chen et al. 2009; Thiele et al. 2009).

Regulation of non-cell autonomous pathway by Pd-callose

Intercellular signal transduction may play a central role
in providing positional information, in many cases, for
plant development (reviewed by Heinlein and Epel
2004; Lehesranta et al. 2010; Lucas et al. 2009; Ruiz-
Medrano et al. 2004). Intercellular signal transduction may
be mediated through apoplastic pathways or by direct cell-
to-cell transport of cell nonautonomous proteins by sym-
plastic exchanges via Pd. Since callose is presumed to be
involved in Pd trafficking, it is reasonable to speculate that

Table 1 Correlation of two nomenclatures for Arabidopsis callose
synthase gene family: AtCalS and AtGSL nomenclatures

GSL nomenclature Gene ID CalS nomenclaturea

GSL1 AT4G04970 CalS11

GSL2 AT2G13680 CalS5

GSL3 AT2G31960.1 CalS2

GSL4 AT3G14570 CalS8

GSL5 AT4G03550 CalS12

GSL6 AT1G05570 CalS1

GSL7 AT1G06490 CalS7

GSL8 AT2G36850 CalS10

GSL9 AT5G36870 CalS4

GSL10 AT3G07160 CalS9

GSL11 AT3G59100 CalS6

GSL12 AT5G13000 CalS3

a CalS nomenclature is based on Verma and Hong (2001)
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this polysaccharide plays an active role during the
regulation of non-cell autonomous protein trafficking. A
recent study revealed that callose and AtGSL8 may play a
crucial role during stomatal patterning (Guseman et al.
2010). An Arabidopsis line that has double mutations in
receptor-like kinases, ERECTA (ER) and ERECTA-LIKE1
(ERL1), er erl1, shows weak phenotype in stomatal
patterning, i.e., higher stomatal density. Genetic screening
of EMS-mutagenized pool of this “sensitized line,” er
erl1, identified a mutant termed chor, that shows clustered
stomata and incomplete development of precursor cells.
CHOR was identified as AtGLS8, and the mutant line
showed incomplete cytokinesis and was defective in
callose formation at cell plate and Pd in leaf epidermal
cells. Consistently, chor shows much higher symplastic
permeability in epidermal cells, with increased size
exclusion limit (SEL, the size of the largest molecule
capable of moving from cell to cell) compared to wild-
type plants. Moreover, SPEACHLESS (SPCH), one of the
bHLH proteins that specify the initiation of stomatal
lineage, shows ectopic distribution in the chor epidermal
cells, possibly due to the aberrant cell-to-cell leakage of
the protein due to enlarged SEL. These observations
suggest that GLS8 is crucially involved in regulating the
stomatal differentiation by restricting distribution of
stomatal development regulator SPCH (Guseman et al.
2010).

Pd permeability and β-1,3-glucanases

Studies of BGs from various plant species revealed that
these enzymes localize to extracellular spaces/cell walls
(Bol et al. 1990; Delp and Palva 1999) and vacuoles
(Castresana et al. 1990). Earlier studies showed that there
are three distinct classes of tobacco (Nicotiana tabacum)
BGs. Class I tobacco BGs consists of vacuole isoforms
(Castresana et al. 1990; Shinshi et al. 1988), while class III
comprises a pathogen-induced BG, pathogenesis-related
(PR)-Q′, an acidic extracellular protein (Payne et al.
1990). Class II consists of three subgroups, termed PR2a,
2b, and 2c (Ori et al. 1990; Ward et al. 1991). PR2a
proteins are acidic, extracellular type, while PR2b are
closely related to 2a, but with basic/neutral isoelectric
point and potential C-terminal vacuole-targeting sequence
(Ward et al. 1991). PR2c, also termed SP41, is an
extracellular protein specifically expressed in the stylar
matrix (Ori et al. 1990).

Bioinformatic analyses identified about 50 BG-related
genes in Arabidopsis (Doxey et al. 2007). Phylogenetic
studies and microarray-based expression analyses showed
that these genes can be classified into several clusters based
on tissue-specific expression, response to physical stresses,
hormones, and pathogens (Doxey et al. 2007). Sequence

analysis of these Arabidopsis BGs showed that there are
five protein domain architectural classes, all of which
contain a N-terminal secretion signal and a core glucosyl
hydrolase family 17 domain, and some contain one or
two repeats of a cellulose binding module, and hydro-
phobic C-terminal sequence (for details, see Doxey et al.
2007). Also, some Arabidopsis BGs are predicted to be
glycosyl phosphatidyl inositol (GPI) anchored, which
links the protein to the extracellular face of the plasma
membrane (Borner et al. 2002, 2003; Elortza et al. 2003;
Levy et al. 2007a). For example, AtBG_pap (A. thaliana
Pd-associated protein), a GPI anchored protein that
associates with Pd, is involved in Pd regulation (Levy et
al. 2007a). Its loss leads to high constitutive accumulation
of callose at Pd due to reduced degradation, which results
in limited cell-to-cell diffusion of cytoplasmic GFP (Levy
et al. 2007a).

Several studies using different plant systems demon-
strated that these enzymes are induced during different
developmental stages. For example, induction of a class I
BG is observed in the process of tobacco seed germina-
tion and dormancy break (Leubner-Metzger 2001, 2002,
2005; Leubner-Metzger and Meins 2000, 2001). Also,
some BGs belonging to PR2 group, are induced by
pathogen infection and are active in digesting fungal cell
wall β-1,3-glucans (Dong et al. 1991; Leubner-Metzger
and Meins 1999). Some BGs are identified in flowers,
including anther, stylar, ovary, stamen, and pollen grain
(Bucciaglia et al. 2003; Delp and Palva 1999; Hird et al.
1993).

Reversible callose accumulation is known to be
involved in regulating symplastic connectivity at differ-
ent stages of plant development. For example, in the
shoot apex of birch (Betula pubescens), callose deposition
is induced by short photoperiod, and as a result, sym-
plastic connectivity is shut down (Rinne et al. 2001). In
this system, the recovery of symplastic connectivity in
spring is likely mediated by a BG whose expression level
remains unchanged, but whose localization is altered by a
temperature shift (Rinne et al. 2001). During the rapid
phase of cotton fiber elongation, Pd are sealed by callose
deposition, and symplastic connectivity between cotton
fiber cell and underlying seed coat epidermis is lost. This
loss in symplastic connectivity allows for the development of
high osmotic and turgor pressures required for rapid cell
wall expansion (Ruan et al. 2001, 2004, 2005). After this
rapid elongation phase callose deposits at those Pd
disappear. Disappearance of callose and reopening of Pd
synchronize with transcription activation of a fiber-specific
BG gene, suggesting that the enzyme plays a crucial role in
controlling the symplastic connection between cotton fiber
cells and adjacent epidermal cells at different developmen-
tal stages (Ruan et al. 2004).
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Other callose associated Pd regulators

Besides these enzymes, other noncatalytic proteins associ-
ated with Pd or cell wall are apparently involved in the
regulation of callose levels. A group of Pd-targeted
proteins, termed Pd callose binding proteins (AtPDCBs),
was recently identified from Arabidopsis (Simpson et al.
2009). AtPDCBs possess a signal sequence for GPI-
anchoring and an X8 domain which is responsible for
carbohydrate binding. It was shown that AtPDCBs have
specific callose binding activity in vitro, and that their
overexpression leads to increased callose deposition at Pd
and inhibits symplastic GFP cell-to-cell diffusion (Simpson
et al. 2009), thus demonstrating their role in controlling Pd
permeability based on callose regulation.

The class 1 reversibly glycosylated polypeptides
(C1RGPs) are another class of Pd-targeted proteins that are
delivered to the plasma membrane of Pd through ER-Golgi
pathway (Sagi et al. 2005). In AtC1RGP2 overexpressing
tobacco, callose accumulation is increased in source leaves
compared to wild-type plants, while viral spread and
development are impaired (Zavaliev et al. 2010). These
observations implicate C1RGPs in callose regulation, and in
turn, Pd mediated molecular trafficking. The mechanism of
callose up-regulation mediated by this protein is as yet
unknown.

Callose deposition is also known to be induced by
oxidative conditions, presumably by activating CalSs
(Bolwell et al. 2002; Verma and Hong 2001). Recent
studies revealed that the cellular factors involved in
metabolism of reactive oxygen species (ROS) may partic-
ipate in callose regulation and, in turn, Pd-mediated
macromolecular trafficking (Benitez-Alfonso et al. 2009;
Benitez-Alfonso and Jackson 2009; Stonebloom et al.
2009). During a screen for genes regulating Pd permeability
at phloem/nonvasculature interfaces, an Arabidopsis mutant
“gfp arrested trafficking 1” (gat1) defective in the thio-
redoxin-m3 (TRX-m3) gene was identified (Benitez-Alfonso
et al. 2009). The diffusion of GFP out of the sieve element
was shown to be reduced in gat1 mutants compared to
wild-type plants. The GAT1/TRX-m3 is expressed in the
meristem and mostly localized to nongreen plastids. The
gene is likely involved in the regulation of redox status
homeostasis, since gat1 mutants accumulate high levels of
ROS and, importantly, higher levels of callose in the root
tips, though its accumulation level at Pd is not defined.
Conversely, when GAT1/TRX-m3 was constitutively over-
expressed, the cell-to-cell trafficking in mature epidermal
cells was increased compared to wild-type plants, demon-
strating that GAT1/TRX-m3 regulates Pd-mediated macro-
molecular trafficking into both positive and negative
directions. In addition, root meristemless 1 (rml1), an
Arabidopsis mutant which is defective in the production

of the antioxidant glutathione (Cairns et al. 2006), or wild-
type plants treated with oxidants, also showed decreased
macromolecular trafficking at the phloem/nonvasculature
interface (Benitez-Alfonso et al. 2009). Collectively, these
observations suggest that the cellular redox status is
involved in callose regulation, and thus in regulation of
Pd permeability. The mechanism for this regulation is
unclear and is of major interest.

Interestingly, Pd-mediated trafficking can be differen-
tially regulated by redox balance, depending on the
intracellular ROS levels. Screening of embryos of EMS-
mutagenized Arabidopsis lines for altered SEL by a dye
loading assay using 10-kDa F-dextran (Kim et al. 2002)
identified a mutant termed increased size exclusion limit 1
(ise1) (Stonebloom et al. 2009). The mutant shows larger
SEL during its early embryonic stage, and is defective in
the expression of ISE1, which encodes DEAD-Box RNA
helicase localized to mitochondria (Stonebloom et al.
2009). In ise1 plants or in Nicotiana benthamiana whose
ISE1 was transiently silenced, like in gat1, ROS accumulate
at higher levels than in wild-type plants. However, in
contrast to gat1, in ISE1 knockout/knockdown backgrounds
the cell-to-cell macromolecular trafficking is significantly
increased (Stonebloom et al. 2009). Callose deposition
levels in these mutants were not characterized, and the
mechanistic reasons for the opposing effects of ROS on Pd-
mediated trafficking in ise1 and gat1 backgrounds need to
be examined. Nonetheless, these studies revealed a possible
mode of Pd regulation by cellular redox status change.

A phenomenon of callose in plant–virus interactions

Callose, apart from being a developmental regulator of
symplastic connectivity, is also deposited at Pd in response
to various stresses, such as wounding (Fig. 1a), plasmoly-
sis, high temperature, chemical treatment, metal toxicity,
and pathogen invasion (reviewed by Levy and Epel 2009;
Stass and Horst 2009; Voigt and Somerville 2009). Callose
deposition at cell wall appears to be a nonspecific defense
response to infection by many pathogens, and it is
presumably aimed at restricting pathogen invasion and/or
spread. There are different patterns of stress-induced callose
deposition at cell walls determined both by pathogen and
host factors. In response to fungal and bacterial infections
callose-rich papillae are formed at pathogen penetration
sites between the plasma membrane and the cell wall (Aist
1976). Accumulation of callose has been detected at pit
fields and walls in plants infected with wide range of
viruses. In Nicotiana glutinosa infected with Tobacco
mosaic virus (TMV), callose accumulation was detected
in walls of initially infected leaf epidermal cells after 20 h
post inoculation (hpi), prior to local lesion formation
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(Shimomura and Dijkstra 1975). Callose accumulation was
observed also in living cells of leaf tissues around TMV
necrotic lesions, suggesting the formation of a physical
barrier to slow virus spread (Beffa et al. 1996; Krasavina et
al. 2002; Schuster and Flemming 1976; Shimomura 1979;
Shimomura and Dijkstra 1975; Stobbs and Manocha 1977;
Wu and Dimitman 1970). Similarly, callose was observed
to accumulate around local lesions in Sorghum bicolor
infected with Maize dwarf mosaic virus (Choi 1999); in
Gomphrena globosa infected with Potato virus X (PVX)
(Allison and Shalla 1974; Pennazio et al. 1981); and in
potato plants infected with Potato virus Y (PVY) (Hinrichs-
Berger et al. 1999). Callose also accumulates as a systemic
response to viral infection in resistant hosts. The develop-
ment of systemic acquired resistance (SAR) to TMV in
resistant tobacco correlated with high callose accumulation
in systemic tissues (Shimomura 1979). It should be noted
that in most of these studies no Pd-callose of virus-infected
plants was directly observed or measured, but rather the
aniline blue-stained callose fluorescence of entire cell wall
of leaf tissues was observed. It is known that the level of
defense response (including callose deposition) in incom-
patible interactions is much stronger than in compatible
interactions (Malamy et al. 1990). Therefore it is suggested
that callose depositions observed in cell walls around viral-
induced necrotic lesions include in addition to Pd also non-
Pd associated callose due to stronger defense reaction in
these plants.

In susceptible hosts, the levels of callose accumulation
are very low or similar to uninfected plants (Krasavina et
al. 2002; Shimomura and Dijkstra 1975). Yet, in these
compatible plant/virus interactions callose was also impli-
cated in limiting viral spread. Arabidopsis is a systemic
host for seed transmissible Turnip vein clearing virus
(TVCV). Yet, the virus is unable to penetrate the host
gametes and is not transmitted through seeds of system-
ically infected plants (Lartey et al. 2008). This reproduc-
tive resistance was attributed to high callose accumulation
observed at Pd between ovule and funiculus as well as in
pollen exine in TVCV-infected Arabidopsis compared to
healthy plants (Lartey et al. 2008). It was shown recently
that infection of nn cultivar of tobacco with TMV results
in inherited changes in resistance of progeny of infected
plants (Kathiria et al. 2010). The F1 progeny of TMV
infected plants exhibited significant delay in systemic
symptoms development upon challenge with TMV, as well
as increased resistance to fungal and bacterial infections.
Compared to control plants, the resistant progeny showed
higher frequency of homologous recombination along
with high levels of callose accumulation at Pd and of
PR1 expression (Kathiria et al. 2010).

Certain nonpathogen-associated stimuli, which lead to
callose accumulation at Pd, may also inhibit virus spread.
Stimulation of callose synthesis at Pd of vascular tissues by
cadmium treatment inhibits the systemic spread of TVCV
in tobacco (Ueki and Citovsky 2002). Cadmium treatment

Fig. 1 Stress-induced callose accumulation at plasmodesmata in leaf
epidermal cells of N. benthamiana. a Confocal image showing the
pattern of wound-induced callose accumulation at pit-fields in aniline
blue stained tissue. Insert: double fluorescent spots of callose at
individual pit-fields (dotted line marks middle lamella). Callose was
stained by incubating a strip of leaf tissue in 0.1% aniline blue for 1–
2 min before observation. Intact cells adjacent to cut were observed. b
Callose accumulation at pit-fields quantified after transient transfor-
mation with mutant TMV. Callose was quantified 24 h post agro-

infiltration (24 hpai) with either a mutant TMV TMVΔMPΔCP
� �

which
replicates, but is unable to move cell-to-cell, or an empty vector as
control for agroinfection. Both are compared to control with no
treatment. Virus replication alone induces high accumulation of
callose in wild-type (WT) plants to levels above both controls. Virus
replication coupled with cell-to-cell movement in transgenic plants
expressing viral movement protein (MP+) triggers callose degradation
at Pd to levels similar to control without treatment. Panel b is
reproduced from Guenoune-Gelbart et al. (2008)
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induces high levels of cdiGRP (cadmium induced
glycine-rich protein) which localizes to cell walls of
vasculature and triggers high callose accumulation in this
tissue. Deficiency in cdiGRP results in enhanced TVCV
spread even in the presence of cadmium, while its
overexpression blocks the virus (Ueki and Citovsky
2002). External application of elicitors of plant defense
responses, like chitosan and β-1,3-glucan sulfate, induces
high callose accumulation in treated tissues and subse-
quent inhibition of viral spread (Iriti and Faoro 2008; Lu et
al. 2010; Menard et al. 2004). Although callose accumu-
lation is an immediate cellular response to these elicitors,
they are suggested to limit only an early phase of viral
spread, since elicitors further activate broader resistance
mechanisms including programmed cell death (PCD) and
SAR, which restrict viral spread.

The above observations demonstrate that, regardless of
the signal that induces callose deposition, there is always
a strong negative correlation between callose accumula-
tion in cell wall and virus spread. It should be noted that
callose accumulation during biotic stress is only one of
many other defence reactions which may also inhibit
viral spread.

Regulation of callose synthesis during stress

Given that callose is a barrier to viral spread, then for
efficient movement between cells and throughout the plant,
viruses must somehow overcome the deposition of callose
at Pd. Callose deposition at Pd is mediated by CalS. The
degree, rate and reversibility of stress induced callose
deposition are highly dependent on the species, tissue type,
and type of stimuli (reviewed by Roberts 2005; Stass and
Horst 2009; Voigt and Somerville 2009). The level of
callose at Pd at any time point is a result of two parallel
processes: synthesis by CalS and hydrolysis by BG.
Control mechanisms differentially regulating the activity,
level, and targeting of these enzymes to Pd, as well as
substrate availability for both enzymes, will determine the
net level of callose at Pd. In some tissues (e.g., epidermis
and phloem), stress-induced callose synthesis is a rapid
process occurring within minutes after stimulation (Fig. 1a)
(Furch et al. 2010; Radford et al. 1998). Such rapid and
localized synthesis of callose is most likely regulated at the
protein level, by the activation of CalS complexes at the
plasma membrane. This activation was shown to be
mediated by high local concentrations of Ca2+ (Kauss
1985) and proteases (Nakashima et al. 2003). Burning the
leaf tip in bean and tomato (Solanum lycopersicum) caused
electropotential waves and led to protein plugging of the
sieve plate pores within 15–45 s at a distance of 3 cm away
from the stimulation point (Furch et al. 2007). This reaction

was followed by callose deposition at the pores and pore Pd
units (PPUs) which reached its maximum after 20 min, with
subsequent slower degradation after 1–2 h. Similar results
were shown for pumpkin (Cucurbita maxima), where
callose deposition reached a maximum at 10 min followed
by slower degradation within 50 min (Furch et al. 2010). It
was suggested that electropotential waves trigger Ca2+

influx into the sieve element lumen causing rapid callose
deposition, and that callose degradation occurs when Ca2+

levels decrease (Furch et al. 2008).
In some cases, CalSs may also be regulated at the

transcriptional level during stress. This was demonstrated in
Arabidopsis, in which of the 12 CalS genes assayed, only
two, AtGSL5 and AtGSL6, were strongly up-regulated by
salicylic acid (SA) and fungal infection (Dong et al. 2008;
Jacobs et al. 2003; Ostergaard et al. 2002). Normally,
AtGSL5 is expressed in floral organs and is suggested to
play a role in pollen maturation and fertility. However its
expression is also highly induced in leaves subjected to
wounding, pathogen infection, and SA treatment (Dong et
al. 2008; Ostergaard et al. 2002). Loss of AtGSL5 in
Arabidopsis (pmr4 and gsl5 mutations) results in low or
lack of callose accumulation upon infection with compat-
ible fungi (Jacobs et al. 2003; Meyer et al. 2009; Nishimura
et al. 2003; Shimada et al. 2006; Ton and Mauch-Mani
2004; Vogel and Somerville 2000; Wawrzynska et al. 2010)
and bacteria (Flors et al. 2008; Kim et al. 2005). However,
unexpectedly, the mutants were resistant to these pathogens
compared to susceptible wild-type plants. The resistance to
fungi was suggested to result from the constitutive up-
regulation of SA dependent SAR pathway in pmr4/gsl5
mutants, which includes induction of PR genes with
antifungal activity (Jacobs et al. 2003; Nishimura et al.
2003). In fact, PR associated BG (AtBG2) was up-regulated
in healthy pmr4 mutants, and was further highly induced
upon fungal infection compared to infected wild-type plants
(Nishimura et al. 2003). These observations show that,
under stress conditions, both callose synthesis and degra-
dation are controlled by SA dependent signaling. Nishimura
et al. (2003) hypothesized that during biotic stress, SA-
induced accumulation of either callose or AtGSL5 triggers
negative feedback mechanism which represses further SA-
dependent defense responses that might be potentially
damaging. Therefore the loss of AtGSL5 results in up-
regulated defense mechanisms. Infection of pmr4 mutants
with cyst-forming nematodes similarly resulted in low
callose accumulation around syncytium, a group of host
cells with dissoluted walls formed at site of nematode
feeding. This again had no significant effect on nematode
development (Hofmann et al. 2010). However, in an
Arabidopsis AtBG_pap mutant, which has high and
constitutive accumulation of callose at Pd, nematode
development was arrested and syncytia formation was
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impaired (Hofmann et al. 2010). AtBG_pap encodes a
constitutive Pd-associated BG (Levy et al. 2007a), which is
not transcriptionally regulated by pathogens or wounding
(Levy and Epel, unpublished results). These data suggest
that though callose accumulation may not be detrimental to
nematode invasion, yet it is an important factor in blocking
its spread. In fact, the dissolution of cell wall during
formation of syncytium was observed to initiate along the
Pd of cells at the nematode feeding site (Golinowski et al.
1996). Interestingly, pmr4/gsl5 mutants apparently have
normal punctate pattern of stress-induced callose deposition
in epidermal cells (Jacobs et al. 2003; Nishimura et al.
2003), suggesting that the mechanism of callose accumu-
lation at Pd might be distinct from that of papillae. It is
likely that some other constitutive CalSs (e.g., AtGSL8; see
above) activated at the protein level are responsible for the
rapid callose accumulation at Pd during stress. However,
the effect of AtGSL5 on Pd-callose levels has yet to be
demonstrated.

β-1,3-Glucanases in virus infection

Induction and control of expression

Callose degradation at Pd is mediated by BG (Levy et al.
2007a). Unlike most CalSs which are posttranslationally
regulated, most BGs are regulated at the transcriptional
level during stress. Thus the onset of degradation of rapidly
deposited callose, as opposed to synthesis, is rather a
slower cellular process (Furch et al. 2007; Simmons 1994).
Among the 50 Arabidopsis BG genes, only a few are
induced upon pathogen infection (Doxey et al. 2007). The
transcription of AtBG1, AtBG2, AtBG3, and At4g16260 was
shown to be highly induced in Arabidopsis upon fungal and
bacterial infection (Dong et al. 1991; Doxey et al. 2007;
Nawrath and Metraux 1999). The increased expression of
these PR-BGs was also observed in global gene expression
analysis of virus infected Arabidopsis plants (Agudelo-
Romero et al. 2008; Ascencio-Ibanez et al. 2008; Babu et
al. 2008; Huang et al. 2005; Whitham et al. 2003). In
Cauliflower mosaic virus (CaMV) infected Arabidopsis,
AtBG2 (PR-2) expression was highly induced in systemic
leaves along with PR-1 and PR-5 (Love et al. 2005). Yang
et al. (2007) analyzed the gene expression profile at four
successive zones (0 to 3) of a radial infection site in Turnip
mosaic virus (TuMV) infected Arabidopsis leaves. A subset
of stress related genes was detected, among them AtBG2
showed highest induction within and adjacent to the
infection site (zones 0–2) and no induction in zone 3 (far
from infection site). Interestingly, other cell wall modifying
genes like xyloglucan hydrolase 6 (XTH6), pectin methyl-
esterase 3 (PME3), and expansin 10 (EXP10) showed

opposite expression profiles, being suppressed in zones 0
and 1, but expressed at normal levels outside of infection
site, zones 2 and 3 (Yang et al. 2007). The latter genes are
responsible for cell wall extensibility, and their suppres-
sion in infected tissue is probably aimed at reducing cell
wall permeability. These observations suggest functional
relevance of localized induction/suppression of stress-
related genes to virus spread. But what would be the
effect of induced callose degradation on virus spread?
Assuming that the induction of PR-BGs in the infection
front is coupled with their targeting to callose deposits at
Pd, it would have positive effect on virus spread. In
tobacco and N. glutinosa the levels of BG activity were
highly and locally induced during local lesion formation
upon infection with TMV and Tomato spotted wilt virus
(TSWV), and systemically induced upon infection with
Broad bean wilt virus (BBWV) (Kauffmann et al. 1987;
Moore and Stone 1972b; Sanada et al. 1986; Ye et al.
1990). Likewise, high local and systemic BG activity was
measured in cucumber (Cucumis sativus) plants infected
with TNV (Ji and Kuc 1995).

PR proteins are part of the nonspecific host defense
reaction, and are involved in the phenomenon of local
and systemic acquired resistance (Hull 2002). Tobacco
PR-BGs have been most extensively studied with respect
to plant pathogen interactions. The transcript and protein
levels of a class I BG from tobacco were highly and
locally induced in TMV infected plants (Vogeli-Lange et
al. 1994; Vogeli-Lange et al. 1988). The expression
appeared in a localized pattern, concentrating in a ring of
cells around the local lesion. A similar localized gene
expression pattern was observed for class II acidic isoform
of BG (PR-2) in tobacco (Hennig et al. 1993), and for an
acidic BG (gluB) in potato (Mac et al. 2004) infected with
TMV.

Effect on virus spread

The localized induction and expression of PR-BGs during
virus infection suggest that these proteins may have
important biological functions in viral pathogenicity. The
constitutive expression of PR-BGs in many species of
transgenic plants results in increased resistance to patho-
genic fungi (reviewed by Grover and Gowthaman 2003; see
also Lusso and Kuc 1996; Melchers et al. 1993; Sela-
Buurlage et al. 1993; Wrobel-Kwiatkowska et al. 2004), as
well as in delay of root colonization by mycorrhizal fungus
(Vierheilig et al. 1995). In these transgenic plants, higher
resistance was suggested to result either directly from
hydrolytic activity of BG on fungal cell wall β-1,3-glucans,
and/or indirectly from the activation of defenses by elicitors
generated by excess BG activity. In contrast to the case of
fungal invasion, in the case of virus infection the direct
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activity of PR-BGs cannot be explained as part of host
resistance mechanism to viral spread. On the contrary,
intensive callose degradation at Pd walls of infected cells
would result in more opened Pd which in turn would
promote viral spread. This hypothesis was proposed by
Moore and Stone (1972b) who measured high BG activity
in cells around TMV-induced lesions and suggested that
“BG could have a role in facilitating the spread of virus
through removal of callose deposits.” Little information is
available on the effect of PR-BG overexpression on viral
infection. Yet, it could be predicted that the spread of
viruses in BG-overexpressing plants will be enhanced due
to expected net reduction in Pd-callose levels. Indeed,
tobacco plants constitutively expressing a modified BG
from thermophylic bacterium Thermotoga neapolitana
(Movsesian et al. 2001) had significantly larger local
lesions upon TMV infection compared to control plants
(Serova et al. 2006). The extent of viral spread was
estimated after incubation of inoculated leaves at 31°C for
24 h (virus spread) and subsequent shift to 23°C (lesion
formation). The strongest effect was observed in transgenic
plants with BG targeted to the apoplast compared to plants
expressing cytoplasmic BG, which had no- or very small
effect on virus spread. The callose levels in transgenic
plants expressing extracellular BG were significantly lower
than in control plants with cytoplasmic BG (Serova et al.
2006). In another report, using transgenic tobacco consti-
tutively expressing class II acidic BG (PR-N), there was no
detectable change in the local spread of TMV and no
difference in systemic spread of Tobacco etch virus (TEV)
and Tobacco vein mottling virus (TVMV) between trans-
genic and control plants (Lusso and Kuc 1996). Yet, these
plants showed increased resistance to fungal infection.
Although PR-N transgenic tobacco had higher BG activity,
the level of callose in these plants at Pd was not measured.

As opposed to BG overexpression, the deficiency in BG
results in reduced susceptibility to viral infection due to net
increase in Pd callose levels (Beffa et al. 1996; Iglesias and
Meins 2000). In mutant plants, in which a class I basic PR-
BG, NtGLA, was silenced by antisense transformation,
there was a delay in local spread of TMV in mutant tobacco
and delayed mosaic disease symptoms of TNV in mutant N.
silvestris plants (Beffa et al. 1996; Iglesias and Meins
2000). The local and systemic spread of PVX (Iglesias and
Meins 2000), and the systemic spread of TVCV (Ueki and
Citovsky 2002), were similarly reduced in NtGLA deficient
tobacco. Stress induced callose accumulation in response to
wounding, high temperature, and xylanase treatment was
markedly increased in NtGLA-deficient tobacco (Iglesias
and Meins 2000; Ueki and Citovsky 2002), and this was
correlated with reduced BG activity (Beffa et al. 1996;
Iglesias and Meins 2000). The mutant plants also had
reduced Pd SEL, as determined by an inhibition of cell-to-

cell movement of the Cucumber mosaic virus 3a MP-GFP
fusion protein and FITC-dextrans (Iglesias and Meins
2000). When the NtGLA coding sequence was cloned into
the TMV genome and the recombinant virus was inoculated
to wild-type tobacco plants, the virus spread faster than
without the gene (Bucher et al. 2001). NtGLA is a basic
isoform of tobacco PR-BGs, which is localized to vacuole,
but it was shown to be secreted to apoplast upon
proteolitic processing (Kunze et al. 1998; Melchers et al.
1993). Therefore, it is probable that by this mechanism the
vacuolar BGs are targeted to their substrate, Pd-callose,
during virus infection. Acidic BG isoforms were also
shown to be induced and secreted upon TMV infection in
tobacco (Kauffmann et al. 1987; Payne et al. 1990; Ward
et al. 1991) and TNV infection in cucumber plants (Ji and
Kuc 1995).

These findings support the view that BGs do not protect
the host against viral infection, but rather they are exploited
by viruses, having positive effect on their spread mediated
by secretion of BG to the apoplast and thus leading to
callose hydrolysis at Pd.

Mechanism of Pd gating by β-1,3-glucanases

Secreted proteins are inserted or translocated into the ER
lumen for subsequent trafficking by ER vesicles, which
fuse with plasma membrane (Jurgens and Geldner 2002). A
common feature of PR proteins, including BGs, is that they
are targeted to ER lumen either for subsequent secretion to
apoplast (acidic proteins), or accumulation in the vacuole
(basic proteins) (Bol et al. 1990). It was shown that elicitor
treatment of tobacco rapidly induced local and systemic
expression of PR-BG which followed the earlier induction
of ER lumenal chaperons: lumenal binding protein (BiP),
protein disulfide isomerase (PDI), endoplasmin, and calre-
ticulin (Jelitto-Van Dooren et al. 1999). Interestingly, the
expression BiP could be detected as early as 2 h after
treatment, followed by induction of BG at 4 h. Early
induced chaperons are suggested to prepare the ER system
for intensive synthesis and secretion of PR proteins during
pathogen infection (Jelitto-Van Dooren et al. 1999; Wang et
al. 2005). The endomembrane system apparently plays an
important role in virus replication and trafficking. The cell-
to-cell spread of many plant viruses is dependent on one or
more viral movement proteins (MPs) (Epel 2009; Lucas
2006). The TMV genome encodes a 30-kDa MP (MPTMV),
which targets and gates Pd to facilitate movement of viral
complexes (Wolf et al. 1989). Upon synthesis, MPTMV

targets to the ER membrane and coordinates virus replica-
tion and movement through Pd, and at later stages it is
associated with ER-derived membranous inclusion bodies
(Heinlein et al. 1998; Mas and Beachy 1999; Reichel and
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Beachy 1998). The precise mechanism of Pd gating
mediated by MPTMV is not well understood. Some recent
studies suggest that the Pd targeting of MPTMV occurs via
actin-ER network (Wright et al. 2007), and its cell-to-cell
movement is dependent on endocytic recycling machinery
(Lewis and Lazarowitz 2010). Other studies, in contrast,
show no involvement of microfilaments in viral spread and
suggest the involvement of nonconventional targeting
mechanisms (Avisar et al. 2008; Prokhnevsky et al. 2005).
Moreover, it was shown that the gating effect of MPTMV is
a result of its ability to promote callose degradation at Pd
accumulated as a stress response to viral infection (Gue-
noune-Gelbart et al. 2008; Liarzi and Epel 2005). Using
TMV and N. benthamiana as its susceptible host, it was
shown that TMV replication in the absence of MPTMV

results in callose accumulation at Pd, while callose levels
are reduced when replication occurs in the presence of
MPTMV (Fig. 1b) (Guenoune-Gelbart et al. 2008). Pd-
callose levels are unaffected in MPTMV transgenic plants
with no virus replication (Fig. 1b), suggesting that both
replication and MPTMV activity are necessary to promote
callose hydrolysis at Pd. It was proposed that TMV must
somehow recruit and/or activate BGs at Pd, or, alternative-
ly, inactivate CalS (Epel 2009).

Taken together, it could be proposed that the secretion
pathway of PR-BGs to cell wall might be up-regulated by a
virus during infection to enhance Pd-callose degradation
and subsequent promotion of viral spread. The possible
mechanism of Pd “gating” is illustrated in Fig. 2, which
shows that the cell-to-cell spread of TMV is facilitated by
callose degradation at Pd mediated by stress induced BG.

Conclusions and future directions

Though callose is clearly playing a vital role in defining
symplastic connection between cells, it is important to note
that there are other factors that regulate Pd without altering
callose deposition during apical shoot meristem develop-
ment (Bayer et al. 2008; Rinne and van der Schoot 1998).
Future studies may reveal the involvement of these path-
ways and their possible crosstalk with Pd-callose turnover
in regulation of Pd permeability to coordinate various tissue
differentiations.

Since plants do not have an adaptive immune system
their survival under pathogen attack depends on the speed
with which they activate defense mechanisms against
pathogen invasion and spread. Callose deposition at cell
wall, including Pd, in both compatible and incompatible
host–pathogen interactions is an important part of plant’s
defense response. The level of callose at Pd, and thus Pd
permeability, is a result of balance between its deposition
and degradation, both of which are under control of stress
signaling. During virus infection there is apparently a shift
in this balance towards more callose degradation than
deposition thus allowing rapid viral spread to as many cells
as possible before onset of host resistance mechanisms.
Such a shift in callose levels could result by either
suppressing the stress-induced callose synthesis or enhanc-
ing its hydrolysis, or both. There are experimental
evidences in support of the latter mechanism, in which
viruses deploy PR-BGs to gate Pd. However, virus-induced
inhibition of CalS activity during infection cannot be
excluded.

Fig. 2 A schematic model illustrating the gating of Pd during virus
infection, exemplified by TMV cell-to-cell spread. Callose (black) is
deposited in the cell wall at the neck region of Pd in response to viral
infection, resulting in constricted Pd aperture. Viral RNA (vRNA)
initiates synthesis of replicase, movement protein (MP), and coat
protein (not shown). MP associates with the endoplasmic reticulum
(ER). Plant defense response to virus replication leads to synthesis of
pathogenesis related β-1,3-glucanase which accumulates in the ER

lumen. ER associated bodies containing replicase, MP and β-1,3-
glucanase are formed. The bodies traffic to plasma membrane and
deliver their lumenal cargo containing β-1,3-glucanase to the cell
wall. When at cell wall, β-1,3-glucanase hydrolyzes callose, allowing
Pd to dilate. MP:vRNA:replicase complex diffuses in the ER-
desmotubule continuum to the next cell through dilated Pd. Repro-
duced from Levy et al. (2007b) with modifications
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Further research is needed to reveal the mechanisms of
Pd regulation by callose turnover during stress. The identity
of possible Pd-specific CalS complex and mode of its
localized regulation during stress conditions are yet unclear.
Although, the involvement of Pd-callose in virus spread
is clearly shown, yet the underlying cellular mechanism
controlling the targeting of PR-BGs to Pd, the kinetics of
callose turnover at Pd during infection and its spatiotem-
poral correlation with viral cell-to-cell spread, need to be
determined. If Pd-callose is a barrier to slow viral spread,
then its deposition has to precede the virus both in space
and time. Loss-of-function mutants of PR-BGs, as well as
the use of specific inhibitors of BG activity in situ will
help to understand the kinetics of Pd gating during virus
infection mediated by callose turnover. Several specific
inhibitors of BG hydrolytic activity in vitro have been
described previously. Among them, (2,3)-epoxypropyl-
β-D-laminaribiose (Hoj et al. 1989), carbodiimide, N-
acetylimidazole, and 2-hydroxy-5-nitrobenzylbromide
(Moore and Stone 1972a), had highest inhibition at low
concentrations. However, the effectiveness and specificity
of these inhibitors in planta have not been tested and need
to be determined.
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