

ELECTROCATALYSIS:

the role of atomic and electronic structures in nanocatalysts enginering

N.M. Marković

Thanks to: V. Stamenkovic, D. Strmcnik, D. Tripkovic, D. Van der Vliet, C. Lucas, General Motors and DOE

Argonne National Laboratory is managed by The University of Chicago for the U.S. Department of Energy

Approach

Use and develop state-of-the-art surface sensitive probes, spectroscopes and EC

STRUCTURE/FUNCTION RELATIONSHIPS AND STABILITY

1. Single crystal surfaces

Monometallic surfaces: structure sensitivity

- Adsorption of spectator species on Pt(hkl)
- ✓ ORR on Pt(hkl)

Bimetallic surfaces:

Polycrystalline Pt₃M (M = Ni, Co, Fe, Mn, Cr, V, T) ✓ *Electrocatalytic trends* ✓ *Stability* Single crystal Pt₃Ni(hkl) surfaces ✓ *Electronic (ligand) effects* ✓ *Geometric effects*

2. High surface area catalysts

Monometallic surfaces: particle size effects
ORR on Pt

Bimetallic surfaces Tailoring catalytic properties

Oxygen Reduction Reaction

ΔG_{ad} term

O₂ adsorption strength is uniquely related to the electronic properties of the electrode material

Pt –
$$O_2^-$$
: ΔG_{ad} = -0.87 eV
Au - O_2^- : ΔG_{ad} = 0.24 eV

(1- Θ_{ad}) term

Θ_{ad} is mostly spectators, not O_{2ad} - Effects availability of metal sites

- and ΔG_{ϵ} -

 $i = n F k (1 - \Theta) \exp(-\gamma \Delta G/RT)$

Structure sensitivity

- Structure sensitive kinetics due to structure sensitive adsorption of H_{upd}, OH_{ad} and anions
- "Serial" reaction pathway:

$$\mathbf{O}_2 \longrightarrow \mathbf{O}_{2,\mathrm{ad}} \stackrel{\mathbf{k}_2}{\longleftarrow} \mathbf{H}_2 \mathbf{O}_{2,\mathrm{ad}} \stackrel{\mathbf{k}_3}{\leftarrow} \mathbf{H}_2 \mathbf{O}_{2,\mathrm{ad}}$$

$$i = n F k (1 - \Theta) exp (-\Delta G/RT)$$

- □ Activation energy (@ E_r : $\Delta G \sim 40$ kJ/mol) is independent of pH and surface structure
- □ ORR kinetics on Pt(hkl) is mainly determined by the (1-Θ_{ad}) term

Surface Science Reports 45 (2002) 117

Particle size effect

• pztc increases by increasing the particle size

JECS 127 (2005) 6819

Reactivity

Pt₃M alloys: UHV characterization

SURFACE PROPERTIES

✓ Chemical nature O and C free surfaces

✓ Composition annealing; pure Pt ("Pt-skin") spattering: bulk terminated

✓ Electronic structure
Pt < bulk term. < Pt-skin
*ε*_d vs. M linear

JECS 128 (2006) 8813

Stability

78

195.09

04

Platinum

✓ Annealed surface (Pt-skin) is stable: oscillatory segregation profile ?????

✓ Sputtered surface is unstable: "Pt-skeleton" bulk terminated concentration profile

Angew.Chem 45 (2006) 2897 (in colaboration with Norskov's group)

Pt₃Ni(hkl)- Ex-situ

Science 315 (2007) 493

Pt₃Ni(111)- In-situ

*Pt*₃*Ni*(111)

- Atomic structure: (1x1)
- > Segregation oscillatory profile: "Pt-skin"

Pt₃(111) system: ORR

Pt₃(hkl) systems: ORR

 \checkmark ORR on Pt₃Ni(111) is the highest that has ever been observed on cathode catalysts ! Science 315 (2007) 493

Pt-skin octahedral nanoparticles: Monte Carlo

✓ Segregation profile obtained from MC simulation

✓ Octahedral particles are thermodynamically stable

Summary and Targets

✓ 10-fold higher of Pt(111) and 90-fold higher of state-of-the art Pt/C

✓ 3 m²/g_{Pt} will exceed 4xPt mass activity target

"ARGONNE" INTERFACE

