BNL: Overview and Energy Initiatives

Doon Gibbs Deputy Director for Science & Technology October 25, 2007

Aerial View of BNL

Snapshot

- BNL is celebrating its 60th anniversary
- Six Nobel Prizes garnered
 - Latest in 2002 and 2003
- ~2600 employees
- >4000 scientific facility users annually
- S&T Portfolio
 - Nuclear & Particle Physics
 - Basic Energy Sciences
 - Life Sciences
 - Environment
 - National Security
 - Computational Science

FY 2007 New Funds \$492 Million

2/3 from Office of Science

DOE Mission

Discover the Solutions that Power and Secure America's Future

BNL Approach

An Integrated, Coherent Approach Among Core Programs, Facilities, Collabs. and Users

All work performed in a safe and environmentally sound manner

National Synchrotron Light Source

- Crucial resource for the Northeast
 - 2100 Users in FY 2006
 - 400 institutions
 - academic, industrial, government
 - > 900 publications in FY 2006 (a record)
 - ~ 25% in premier journals
- Vital for BNL programs:
 - Energy, CFN, Catalysis Center, Structural Biology, Environment
- What's next: NSLS-II
 - NSLS ~25 years old

NSLS-II: Enable the Nanoscience Revolution

- World-leading performance
 - 10,000 brighter than NSLS
 - 1 nm spatial resolution
 - 0.1 meV energy resolution
 - Synergy with the CFN
 - Dynamical characterization of new materials, reactions, processes
- CD-1 announced on July 17
 - \$750-925M TPC
 - Full operations in FY2015
 - Comparable in scope to RHIC operations

Center for Functional Nanomaterials

To develop and share materials and processes at the nano-scale to address the country's critical needs

Themes

- Electronic Nanomaterials
- Soft/Bio Nanomaterials
- Nanocatalysis/Interfaces

- Properties: User-oriented, Focused on energy
- Capabilities: Preparation, Characterization, Understanding, New Techniques
- User facility, fully operational 5/08
- In FY 2006, 91 proposals received; 88 accepted; 31 new

U.S. Energy Flows and Consumption

NATIONAL LABORATO

Brookhaven Strategic Plan

BNL Initiatives

NSLS-II

CFN/Nanoscience

New York Blue

BNL Energy Vision

Basic/applied research underlying breakthroughs in effective use of renewable energy through improved conversion, transmission, and storage

Energy Themes

- Catalysis
- Solar
- Complex Materials
- Biofuels

$RHIC \rightarrow RHICII \rightarrow eRHIC$

Focused Energy LDRD Investment

Nanocatalyst

Superconductor

Engineered Enzyme, combustion

Partners: SBU/Universities/Industry

BNL Energy Portfolio

Basic and applied research underlying breakthroughs in efficient use of renewable energy

CFN, NSLS I, II, New York Blue

Spectrum of energy research

Discovery Research

Use-inspired Basic Research

Applied Research

Technology Maturation & Deployment

- Basic research for fundamental new understanding
- Development of new tools, techniques, and facilities
- Basic research for new understanding specifically to overcome showstoppers on realworld materials.
- Research with the goal of meeting technical targets, with emphasis on the development, performance, cost reduction, and durability of materials and components or on efficient processes
- Proof of technology concept

- Cost reduction
- Scale-up research
- Prototyping

Technology Offices

- Manufacturing R&D
- Deployment support

Office of Science

Brookhaven: "Complete spectrum" of energy research Technology Maturation **Applied Research Discovery Research Use-inspired Basic Research** & Deployment **Fuel Cell Nanocatalysis CRADAs with Industry** Challenge: Pt loading, activity, stability - GM: Scale up of nanocatalyst synthesis -Solution: Pt submonolayer on nanoparticles Toyota: Oxygen reduction new nanocatalysts - Battelle: Integration with fuel cell membranes Dupont: Methanol oxidation nanocatalysts 1 Ru 0.8 0.8 GM **JUNE 1** 0.6 0.6Voltage / V

Energy Storage: Catalysis/Electrochemistry

Direct Ethanol Fuel Cell

 $C_2H_5OH + 3 H_2O \rightarrow 2 CO_2 + 12 H^+ + 12 e^-$

Challenge: C-C bond is broken only at extreme potentials

Solution: Pt/SnO2/Rh Catalyst

Lithium Batteries

Challenge: capacity, cycle life, charge time

Solution: Nanostructured electrode materials for larger area electrodes

Electron micrographs of nanostructured Li-Al-Sn prepared at BNL.

Capacity 10 x Industry Standard

Transmission: Superconductivity

Opportunity: Improving infrastructure of the electrical gridCapacityReliabilityEfficiency

Lower Manhattan underground infrastructure. Courtesy Con Edison

SC Cable 5x capacity of Cu

Current

SC Wire IS the controller

Self-healing

SC Wire: less transmission loss

Challenge: chemically and structurally complex

BiO BiO SrO CuO Ca CuO SrO BiO BiO SrO CuO Ca 3.17Å CuO SrO BiO

The unit cell of $Bi_2Sr_2Ca_4Cu_5O_{14}$ contains 54 atoms!

High quality synthesis essential for progress

3rd generation MBE: Discovery of interface superconductivity

Solution: Atomic layer-by-layer molecular beam epitaxy (MBE) machine

Grow 1 layer at a time

AFM

Interface Superconductivity

• Superconductivity at an interface between two materials that are NOT superconducting

EERE: Superconducting wires CRADA: American superconductor

Production: Biofuels

- Understand at the molecular level the fundamental mechanisms that catalyze biological conversions of materials
- Develop tools and methods for engineering plant and microbial enzyme systems

BNL/NREL: Poplar biomass

- alternative to corn (marginal land use)

Poplar biomass

Bioethanol

Poplar plantation

Exploit endophyte mechanisms: improve plant growth over 40%

End Use: Biofuels

- Genetically engineered microbes to produce desired fuels
- Combustion research

Specifically designed biofuel: Reduced storage degradation, better cold-flow properties, cleaner combustion

A typical configuration for a one-pipe steam heating system.

NYSERDA

Keyspan Renewable Energy Long Island Changing World Technologies – Long Island Heat Wise, Inc. – Long Island Fulton Boiler Co. – Fulton, N.Y. Oilheat Institute of Long Island

Engineering to form oils with desired properties: high energy content/clean burning

The Role of Science and Basic Research

Challenge: Efficiency Limit in Conventional Photovoltaics (32%) Opportunity: Unusual physics of nanoparticles

Recovering Heat Normally Lost

Best compromise: 32% efficiency

Conversion: Carbon Nanotube Photovoltaic Device

World's smallest Photovoltaic

Freitag, Misewich et al., Nano Letters 3, 1067 (2003)

Nanomaterial diversity is a challenge for nanoscience—there are many different structures.

How do we pick out the ones with the best properties?—BNL FACILITIES

Facility Solutions: High sensitivity for nanomaterials

NSLS: IR Beamline Determining the photoconductivity of a single nanotube

CFN: TEM Facility Determining the physical structure of the same single nanotube

Working in concert to provide new insight into nanoscience

Sfeir, Zhu, Misewich et al.Science 312, 554 (2006)

BNL Impacts: Future Vehicle Fleet

Largest user of petroleum is transportation (drives fuel switching) Energy lost is greater than energy used (drives efficiency, recovery and storage)

Biodiesel

Efficient plant/produce engineering <

Superconductors

Reliable grid to bring power to charge – batteries for plug in hybrids

Lithium Ion Battery Pack improved electrodes and electrolytes

> Hydrogen Storage understanding of alanate storage mechanisms/catalysis

Thermoelectric heat recovery nanostructured high thermopower materials

Direct ethanol fuel cells

Hydrogen Hybrid Electric...

